
Umpire Documentation
Release 5.0.1

David Beckingsale

Jun 14, 2021

BASICS

1 Getting Started 3
1.1 Installation . 3
1.2 Basic Usage . 4

2 Umpire Tutorial 5
2.1 Allocators . 5
2.2 Resources . 7
2.3 Operations . 8
2.4 Dynamic Pools . 14
2.5 Introspection . 18
2.6 Typed Allocators . 19
2.7 Replay . 20
2.8 C API: Allocators . 21
2.9 C API: Resources . 22
2.10 C API: Pools . 22
2.11 FORTRAN API: Allocators . 23

3 Advanced Configuration 25

4 Umpire Cookbook 27
4.1 Growing and Shrinking a Pool . 27
4.2 Disable Introspection . 29
4.3 Apply Memory Advice to a Pool . 30
4.4 Apply Memory Advice with a Specific Device ID . 31
4.5 Moving Host Data to Managed Memory . 33
4.6 Improving DynamicPoolList Performance with a Coalesce Heuristic 34
4.7 Move Allocations Between NUMA Nodes . 36
4.8 Determining the Largest Block of Available Memory in Pool . 38
4.9 Coalescing Pool Memory . 39
4.10 Building a Pinned Memory Pool in FORTRAN . 40
4.11 Visualizing Allocators . 41
4.12 Mixed Pool Creation and Algorithm Basics . 43
4.13 Thread Safe Allocator . 44
4.14 Using File System Allocator (FILE) . 45
4.15 Using Burst Buffers On Lassen . 46
4.16 Getting the Strategy Name . 47

5 Features 49
5.1 Allocators . 49
5.2 Allocator Accessibility . 49

i

5.3 Backtrace . 51
5.4 File I/O . 53
5.5 Logging and Replay of Umpire Events . 54
5.6 Operations . 56
5.7 Strategies . 56

6 Contribution Guide 59
6.1 Forking Umpire . 59

7 Developer Guide 61
7.1 Continuous Integration . 61
7.2 Uberenv . 61
7.3 HPCToolKit . 63

ii

Umpire Documentation, Release 5.0.1

Umpire is a resource management library that allows the discovery, provision, and management of memory on next-
generation hardware architectures with NUMA memory hierarchies.

• Take a look at our Getting Started guide for all you need to get up and running with Umpire.

• If you are looking for developer documentation on a particular function, check out the code documentation.

• Want to contribute? Take a look at our developer and contribution guides.

Any questions? File an issue on GitHub, or email umpire-dev@llnl.gov

BASICS 1

mailto:umpire-dev@llnl.gov

Umpire Documentation, Release 5.0.1

2 BASICS

CHAPTER

ONE

GETTING STARTED

This page provides information on how to quickly get up and running with Umpire.

1.1 Installation

Umpire is hosted on GitHub here. To clone the repo into your local working space, type:

$ git clone --recursive https://github.com/LLNL/Umpire.git

The --recursive argument is required to ensure that the BLT submodule is also checked out. BLT is the build system
we use for Umpire.

1.1.1 Building Umpire

Umpire uses CMake and BLT to handle builds. Make sure that you have a modern compiler loaded and the configuration
is as simple as:

$ mkdir build && cd build
$ cmake ../

By default, Umpire will only support host memory. Additional backends for device support can be enabled using the
options detailed in Advanced Configuration. CMake will provide output about which compiler is being used and the
values of other options. Once CMake has completed, Umpire can be built with Make:

$ make

For more advanced configuration options, see Advanced Configuration.

1.1.2 Installing Umpire

To install Umpire, just run:

$ make install

Umpire install files to the lib, include and bin directories of the CMAKE_INSTALL_PREFIX. Additionally, Umpire
installs a CMake configuration file that can help you use Umpire in other projects. By setting umpire_DIR to point to
the root of your Umpire installation, you can call find_package(umpire) inside your CMake project and Umpire
will be automatically detected and available for use.

3

https://github.com/LLNL/Umpire
https://github.com/LLNL/BLT

Umpire Documentation, Release 5.0.1

1.2 Basic Usage

Let’s take a quick tour through Umpire’s most important features. A complete listing you can compile is included at
the bottom of the page. First, let’s grab an Allocator and allocate some memory. This is the interface through which
you will want to access data:

auto& rm = umpire::ResourceManager::getInstance();
umpire::Allocator allocator = rm.getAllocator("HOST");

float* my_data = static_cast<float*>(allocator.allocate(100*sizeof(float));

This code grabs the default allocator for the host memory, and uses it to allocate an array of 100 floats. We can ask for
different Allocators to allocate memory in different places. Let’s ask for a device allocator:

umpire::Allocator device_allocator = rm.getAllocator("DEVICE");

float* my_data_device = static_cast<float*>(device_allocator.allocate(100*sizeof(float));

This code gets the default device allocator, and uses it to allocate an array of 100 floats. Remember, since this is a
device pointer, there is no guarantee you will be able to access it on the host. Luckily, Umpire’s ResourceManager can
copy one pointer to another transparently. Let’s copy the data from our first pointer to the DEVICE-allocated pointer.

rm.copy(my_data, my_data_device);

To free any memory allocated, you can use the deallocate function of the Allocator, or the ResourceManager. Asking
the ResourceManager to deallocate memory is slower, but useful if you don’t know how or where an allocation was
made:

allocator.deallocate(my_data); // deallocate using Allocator
rm.deallocate(my_data_device); // deallocate using ResourceManager

4 Chapter 1. Getting Started

CHAPTER

TWO

UMPIRE TUTORIAL

This section is a tutorial introduction to Umpire. We start with the most basic memory allocation, and move through
topics like allocating on different resources, using allocation strategies to change how memory is allocated, using
operations to move and modify data, and how to use Umpire introspection capability to find out information about
Allocators and allocations.

These examples are all built as part of Umpire, and you can find the files in the examples directory at the root of the
Umpire repository. Feel free to play around and modify these examples to experiment with all of Umpire’s functionality.

The following tutorial examples assume a working knowledge of C++ and a general understanding of how memory is
laid out in modern heterogeneous computers. The main thing to remember is that in many systems, memory on other
execution devices (like GPUs) might not be directly accessible from the CPU. If you try and access this memory your
program will error! Luckily, Umpire makes it easy to move data around, and check where it is, as you will see in the
following sections.

2.1 Allocators

The fundamental concept for accessing memory through Umpire is the umpire::Allocator. An
umpire::Allocator is a C++ object that can be used to allocate and deallocate memory, as well as query a
pointer to get some extra information about it.

All umpire::Allocator s are created and managed by Umpire’s umpire::ResourceManager. To get an Allocator,
you need to ask for one:

umpire::Allocator allocator = rm.getAllocator("HOST");

You can also use an existing allocator to build a new allocator from it:

auto addon_allocator = rm.getAllocator(allocator.getName());

This new allocator will also be built with the same memory resource. More information on memory resources is
provided in the next section. Additionally, once you have an umpire::Allocator you can use it to allocate and
deallocate memory:

double* data =
static_cast<double*>(allocator.allocate(SIZE * sizeof(double)));

allocator.deallocate(data);

In the next section, we will see how to allocate memory using different resources.

5

https://github.com/LLNL/Umpire/tree/develop/examples

Umpire Documentation, Release 5.0.1

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();

// _sphinx_tag_tut_get_allocator_start
umpire::Allocator allocator = rm.getAllocator("HOST");
// _sphinx_tag_tut_get_allocator_end

constexpr std::size_t SIZE = 1024;

// _sphinx_tag_tut_allocate_start
double* data =

static_cast<double*>(allocator.allocate(SIZE * sizeof(double)));
// _sphinx_tag_tut_allocate_end

std::cout << "Allocated " << (SIZE * sizeof(double)) << " bytes using the "
<< allocator.getName() << " allocator." << std::endl;

//_sphinx_tag_tut_getAllocator_start
auto addon_allocator = rm.getAllocator(allocator.getName());
//_sphinx_tag_tut_getAllocator_end

std::cout << "Created an add-on allocator of size " << addon_allocator.getCurrentSize()
<< " using the " << allocator.getName() << " allocator." << std::endl;

// _sphinx_tag_tut_deallocate_start
allocator.deallocate(data);
// _sphinx_tag_tut_deallocate_end

std::cout << "...Memory deallocated." << std::endl;

return 0;
}

6 Chapter 2. Umpire Tutorial

Umpire Documentation, Release 5.0.1

2.2 Resources

Each computer system will have a number of distinct places in which the system will allow you to allocate memory. In
Umpire’s world, these are memory resources. A memory resource can correspond to a hardware resource, but can also
be used to identify memory with a particular characteristic, like “pinned” memory in a GPU system.

When you configure Umpire, it will create umpire::resource::MemoryResource s according to what is available on
the system you are building for. For each resource (defined by MemoryResourceTraits::resource_type), Umpire
will create a default umpire::Allocator that you can use. In the previous example, we were actually using an
umpire::Allocator created for the memory resource corresponding to the CPU memory.

The easiest way to identify resources is by name. The “HOST” resource is always available. We also have resources that
represent global GPU memory (“DEVICE”), constant GPU memory (“DEVICE_CONST”), unified memory that can
be accessed by the CPU or GPU (“UM”), host memory that can be accessed by the GPU (“PINNED”), and mmapped
file memory (“FILE”). If an incorrect name is used or if the allocator was not set up correctly, the “UNKNOWN”
resource name is returned.

Umpire will create an umpire::Allocator for each of these resources, and you can get them using the same
umpire::ResourceManager::getAllocator() call you saw in the previous example:

umpire::Allocator allocator = rm.getAllocator(resource);

Note that since every allocator supports the same calls, no matter which resource it is for, this means we can run the
same code for all the resources available in the system.

While using Umpire memory resources, it may be useful to query the memory resource currently associ-
ated with a particular allocator. For example, if we wanted to double check that our allocator is using the
device resource, we can assert that MemoryResourceTraits::resource_type::device is equal to the re-
turn value of allocator.getAllocationStrategy()->getTraits().resource. The test code provided in
memory_resource_traits_tests.cpp shows a complete example of how to query this information.

Note: In order to test some memory resources, you may need to configure your Umpire build to use a particular
platform (a member of the umpire::Allocator, defined by Platform.hpp) that has access to that resource. See the
Developer’s Guide for more information.

Next, we will see an example of how to move data between resources using operations.

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"

void allocate_and_deallocate(const std::string& resource)
{
auto& rm = umpire::ResourceManager::getInstance();

// _sphinx_tag_tut_get_allocator_start
umpire::Allocator allocator = rm.getAllocator(resource);
// _sphinx_tag_tut_get_allocator_end

(continues on next page)

2.2. Resources 7

https://umpire.readthedocs.io/en/develop/developer_guide.html

Umpire Documentation, Release 5.0.1

(continued from previous page)

constexpr std::size_t SIZE = 1024;

double* data =
static_cast<double*>(allocator.allocate(SIZE * sizeof(double)));

std::cout << "Allocated " << (SIZE * sizeof(double)) << " bytes using the "
<< allocator.getName() << " allocator...";

allocator.deallocate(data);

std::cout << " deallocated." << std::endl;
}

int main(int, char**)
{
allocate_and_deallocate("HOST");

#if defined(UMPIRE_ENABLE_DEVICE)
allocate_and_deallocate("DEVICE");

#endif
#if defined(UMPIRE_ENABLE_UM)
allocate_and_deallocate("UM");

#endif
#if defined(UMPIRE_ENABLE_PINNED)
allocate_and_deallocate("PINNED");

#endif

return 0;
}

2.3 Operations

Moving and modifying data in a heterogenous memory system can be annoying. You have to keep track of the source
and destination, and often use vendor-specific APIs to perform the modifications. In Umpire, all data modification and
movement is wrapped up in a concept we call operations. Full documentation for all of these is available here. The full
code listing for each example is include at the bottom of the page.

2.3.1 Copy

Let’s start by looking at how we copy data around. The umpire::ResourceManager provides an interface to copy that
handles figuring out where the source and destination pointers were allocated, and selects the correct implementation
to copy the data:

rm.copy(dest_data, source_data);

This example allocates the destination data using any valid Allocator.

8 Chapter 2. Umpire Tutorial

../features/operations.html

Umpire Documentation, Release 5.0.1

2.3.2 Move

If you want to move data to a new Allocator and deallocate the old copy, Umpire provides a
umpire::ResourceManager::move() operation.

double* dest_data =
static_cast<double*>(rm.move(source_data, dest_allocator));

The move operation combines an allocation, a copy, and a deallocate into one function call, allowing you to move data
without having to have the destination data allocated. As always, this operation will work with any valid destination
Allocator.

2.3.3 Memset

Setting a whole block of memory to a value (like 0) is a common operation, that most people know as a memset. Umpire
provides a umpire::ResourceManager::memset() implementation that can be applied to any allocation, regardless
of where it came from:

rm.memset(data, 0);

2.3.4 Reallocate

Reallocating CPU memory is easy, there is a function designed specifically to do it: realloc. When the
original allocation was made in a different memory however, you can be out of luck. Umpire provides a
umpire::ResourceManager::reallocate() operation:

data = static_cast<double*>(rm.reallocate(data, REALLOCATED_SIZE));

This method returns a pointer to the reallocated data. Like all operations, this can be used regardless of the Allocator
used for the source data.

2.3.5 Listings

Copy Example Listing

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"

void copy_data(double* source_data, std::size_t size,
const std::string& destination)

{
auto& rm = umpire::ResourceManager::getInstance();
auto dest_allocator = rm.getAllocator(destination);

double* dest_data =
(continues on next page)

2.3. Operations 9

Umpire Documentation, Release 5.0.1

(continued from previous page)

static_cast<double*>(dest_allocator.allocate(size * sizeof(double)));

// _sphinx_tag_tut_copy_start
rm.copy(dest_data, source_data);
// _sphinx_tag_tut_copy_end

std::cout << "Copied source data (" << source_data << ") to destination "
<< destination << " (" << dest_data << ")" << std::endl;

dest_allocator.deallocate(dest_data);
}

int main(int, char**)
{
constexpr std::size_t SIZE = 1024;

auto& rm = umpire::ResourceManager::getInstance();

auto allocator = rm.getAllocator("HOST");

double* data =
static_cast<double*>(allocator.allocate(SIZE * sizeof(double)));

std::cout << "Allocated " << (SIZE * sizeof(double)) << " bytes using the "
<< allocator.getName() << " allocator." << std::endl;

std::cout << "Filling with 0.0...";

for (std::size_t i = 0; i < SIZE; i++) {
data[i] = 0.0;

}

std::cout << "done." << std::endl;

copy_data(data, SIZE, "HOST");
#if defined(UMPIRE_ENABLE_DEVICE)
copy_data(data, SIZE, "DEVICE");

#endif
#if defined(UMPIRE_ENABLE_UM)
copy_data(data, SIZE, "UM");

#endif
#if defined(UMPIRE_ENABLE_PINNED)
copy_data(data, SIZE, "PINNED");

#endif

allocator.deallocate(data);

return 0;
}

Move Example Listing

10 Chapter 2. Umpire Tutorial

Umpire Documentation, Release 5.0.1

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"

double* move_data(double* source_data, const std::string& destination)
{
auto& rm = umpire::ResourceManager::getInstance();
auto dest_allocator = rm.getAllocator(destination);

std::cout << "Moved source data (" << source_data << ") to destination ";

// _sphinx_tag_tut_move_start
double* dest_data =

static_cast<double*>(rm.move(source_data, dest_allocator));
// _sphinx_tag_tut_move_end

std::cout << destination << " (" << dest_data << ")" << std::endl;

return dest_data;
}

int main(int, char**)
{
constexpr std::size_t SIZE = 1024;

auto& rm = umpire::ResourceManager::getInstance();

auto allocator = rm.getAllocator("HOST");

double* data =
static_cast<double*>(allocator.allocate(SIZE * sizeof(double)));

std::cout << "Allocated " << (SIZE * sizeof(double)) << " bytes using the "
<< allocator.getName() << " allocator." << std::endl;

std::cout << "Filling with 0.0...";

for (std::size_t i = 0; i < SIZE; i++) {
data[i] = 0.0;

}

std::cout << "done." << std::endl;

data = move_data(data, "HOST");
#if defined(UMPIRE_ENABLE_DEVICE)
data = move_data(data, "DEVICE");

#endif
#if defined(UMPIRE_ENABLE_UM)

(continues on next page)

2.3. Operations 11

Umpire Documentation, Release 5.0.1

(continued from previous page)

data = move_data(data, "UM");
#endif
#if defined(UMPIRE_ENABLE_PINNED)
data = move_data(data, "PINNED");

#endif

rm.deallocate(data);

return 0;
}

Memset Example Listing

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"

int main(int, char**)
{
constexpr std::size_t SIZE = 1024;

auto& rm = umpire::ResourceManager::getInstance();

const std::string destinations[] = {
"HOST"

#if defined(UMPIRE_ENABLE_DEVICE)
,
"DEVICE"

#endif
#if defined(UMPIRE_ENABLE_UM)

,
"UM"

#endif
#if defined(UMPIRE_ENABLE_PINNED)

,
"PINNED"

#endif
};

for (auto& destination : destinations) {
auto allocator = rm.getAllocator(destination);
double* data =

static_cast<double*>(allocator.allocate(SIZE * sizeof(double)));

std::cout << "Allocated " << (SIZE * sizeof(double)) << " bytes using the "
<< allocator.getName() << " allocator." << std::endl;

(continues on next page)

12 Chapter 2. Umpire Tutorial

Umpire Documentation, Release 5.0.1

(continued from previous page)

// _sphinx_tag_tut_memset_start
rm.memset(data, 0);
// _sphinx_tag_tut_memset_end

std::cout << "Set data from " << destination << " (" << data << ") to 0."
<< std::endl;

allocator.deallocate(data);
}

return 0;
}

Reallocate Example Listing

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"

int main(int, char**)
{
constexpr std::size_t SIZE = 1024;
constexpr std::size_t REALLOCATED_SIZE = 256;

auto& rm = umpire::ResourceManager::getInstance();

const std::string destinations[] = {
"HOST"

#if defined(UMPIRE_ENABLE_DEVICE)
,
"DEVICE"

#endif
#if defined(UMPIRE_ENABLE_UM)

,
"UM"

#endif
#if defined(UMPIRE_ENABLE_PINNED)

,
"PINNED"

#endif
};

for (auto& destination : destinations) {
auto allocator = rm.getAllocator(destination);
double* data =

static_cast<double*>(allocator.allocate(SIZE * sizeof(double)));

(continues on next page)

2.3. Operations 13

Umpire Documentation, Release 5.0.1

(continued from previous page)

std::cout << "Allocated " << (SIZE * sizeof(double)) << " bytes using the "
<< allocator.getName() << " allocator." << std::endl;

std::cout << "Reallocating data (" << data << ") to size "
<< REALLOCATED_SIZE << "...";

// _sphinx_tag_tut_realloc_start
data = static_cast<double*>(rm.reallocate(data, REALLOCATED_SIZE));
// _sphinx_tag_tut_realloc_end

std::cout << "done. Reallocated data (" << data << ")" << std::endl;

allocator.deallocate(data);
}

return 0;
}

2.4 Dynamic Pools

Frequently allocating and deallocating memory can be quite costly, especially when you are making large allocations
or allocating on different memory resources. To mitigate this, Umpire provides allocation strategies that can be used
to customize how data is obtained from the system.

In this example, we will look at the umpire::strategy::DynamicPoolList strategy. This is a simple pool-
ing algorithm that can fulfill requests for allocations of any size. To create a new Allocator using the
umpire::strategy::DynamicPoolList strategy:

auto pooled_allocator = rm.makeAllocator<umpire::strategy::DynamicPoolList>(
resource + "_pool", allocator);

We have to provide a new name for the Allocator, as well as the underlying Allocator we wish to use to grab memory.

Additionally, in the previous section on Allocators, we mentioned that you could build a new allocator off of an existing
one using the getAllocator function. Here is another example of this, but using a strategy:

umpire::Allocator addon_allocator = rm.makeAllocator<umpire::strategy::SizeLimiter>(
resource + "_addon_pool", rm.getAllocator(pooled_allocator.getName()), 2098);

The purpose of this example is to show that the getAllocator function can be used more than just to get an initial
allocator. The addon_allocator will be a dynamic pool allocator that is limited to 2098 bytes. Another good use
case for the getAllocator function is grabbing each available allocator in a loop and querying some property. (Note
that addon_allocator in the above example will be created with the same memory resource as pooled_allocator
was.)

Once you have an Allocator, you can allocate and deallocate memory as before, without needing to worry about the
underlying algorithm used for the allocations:

double* data =
static_cast<double*>(pooled_allocator.allocate(SIZE * sizeof(double)));

14 Chapter 2. Umpire Tutorial

Umpire Documentation, Release 5.0.1

pooled_allocator.deallocate(data);

Don’t forget, these strategies can be created on top of any valid Allocator:

allocate_and_deallocate_pool("HOST");

#if defined(UMPIRE_ENABLE_DEVICE)
allocate_and_deallocate_pool("DEVICE");

#endif
#if defined(UMPIRE_ENABLE_UM)
allocate_and_deallocate_pool("UM");

#endif
#if defined(UMPIRE_ENABLE_PINNED)
allocate_and_deallocate_pool("PINNED");

#endif

Most Umpire users will make allocations that use the GPU via the umpire::strategy::DynamicPoolList, to help
mitigate the cost of allocating memory on these devices.

You can tune the way that umpire::strategy::DynamicPoolList allocates memory using two parameters: the
initial size, and the minimum size. The initial size controls how large the first underly allocation made will be, regardless
of the requested size. The minimum size controls the minimum size of any future underlying allocations. These two
parameters can be passed when constructing a pool:

auto pooled_allocator = rm.makeAllocator<umpire::strategy::DynamicPoolList>(
resource + "_pool", allocator, initial_size, /* default = 512Mb*/
min_block_size /* default = 1Mb */);

Depending on where you are allocating data, you might want to use different sizes. It’s easy to construct multiple pools
with different configurations:

allocate_and_deallocate_pool("HOST", 65536, 512);
#if defined(UMPIRE_ENABLE_DEVICE)
allocate_and_deallocate_pool("DEVICE", (1024 * 1024 * 1024), (1024 * 1024));

#endif
#if defined(UMPIRE_ENABLE_UM)
allocate_and_deallocate_pool("UM", (1024 * 64), 1024);

#endif
#if defined(UMPIRE_ENABLE_PINNED)
allocate_and_deallocate_pool("PINNED", (1024 * 16), 1024);

#endif

There are lots of different strategies that you can use, we will look at some of them in this tutorial. A complete list of
strategies can be found here.

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/DynamicPoolList.hpp"

(continues on next page)

2.4. Dynamic Pools 15

../features/operations.html

Umpire Documentation, Release 5.0.1

(continued from previous page)

void allocate_and_deallocate_pool(const std::string& resource)
{
auto& rm = umpire::ResourceManager::getInstance();

auto allocator = rm.getAllocator(resource);

// _sphinx_tag_tut_makepool_start
auto pooled_allocator = rm.makeAllocator<umpire::strategy::DynamicPoolList>(

resource + "_pool", allocator);
// _sphinx_tag_tut_makepool_end

constexpr std::size_t SIZE = 1024;

// _sphinx_tag_tut_allocate_start
double* data =

static_cast<double*>(pooled_allocator.allocate(SIZE * sizeof(double)));
// _sphinx_tag_tut_allocate_end

std::cout << "Allocated " << (SIZE * sizeof(double)) << " bytes using the "
<< pooled_allocator.getName() << " allocator...";

// _sphinx_tag_tut_deallocate_start
pooled_allocator.deallocate(data);
// _sphinx_tag_tut_deallocate_end

std::cout << " deallocated." << std::endl;
}

int main(int, char**)
{
// _sphinx_tag_tut_anyallocator_start
allocate_and_deallocate_pool("HOST");

#if defined(UMPIRE_ENABLE_DEVICE)
allocate_and_deallocate_pool("DEVICE");

#endif
#if defined(UMPIRE_ENABLE_UM)
allocate_and_deallocate_pool("UM");

#endif
#if defined(UMPIRE_ENABLE_PINNED)
allocate_and_deallocate_pool("PINNED");

#endif
// _sphinx_tag_tut_anyallocator_end

return 0;
}

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//

(continues on next page)

16 Chapter 2. Umpire Tutorial

Umpire Documentation, Release 5.0.1

(continued from previous page)

// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/DynamicPoolList.hpp"

void allocate_and_deallocate_pool(const std::string& resource,
std::size_t initial_size,
std::size_t min_block_size)

{
constexpr std::size_t SIZE = 1024;

auto& rm = umpire::ResourceManager::getInstance();

auto allocator = rm.getAllocator(resource);

// _sphinx_tag_tut_allocator_tuning_start
auto pooled_allocator = rm.makeAllocator<umpire::strategy::DynamicPoolList>(

resource + "_pool", allocator, initial_size, /* default = 512Mb*/
min_block_size /* default = 1Mb */);

// _sphinx_tag_tut_allocator_tuning_end

double* data =
static_cast<double*>(pooled_allocator.allocate(SIZE * sizeof(double)));

std::cout << "Allocated " << (SIZE * sizeof(double)) << " bytes using the "
<< pooled_allocator.getName() << " allocator...";

pooled_allocator.deallocate(data);

std::cout << " deallocated." << std::endl;
}

int main(int, char**)
{
// _sphinx_tag_tut_device_sized_pool_start
allocate_and_deallocate_pool("HOST", 65536, 512);

#if defined(UMPIRE_ENABLE_DEVICE)
allocate_and_deallocate_pool("DEVICE", (1024 * 1024 * 1024), (1024 * 1024));

#endif
#if defined(UMPIRE_ENABLE_UM)
allocate_and_deallocate_pool("UM", (1024 * 64), 1024);

#endif
#if defined(UMPIRE_ENABLE_PINNED)
allocate_and_deallocate_pool("PINNED", (1024 * 16), 1024);

#endif
// _sphinx_tag_tut_device_sized_pool_end

return 0;
}

2.4. Dynamic Pools 17

Umpire Documentation, Release 5.0.1

2.5 Introspection

When writing code to run on computers with a complex memory hierarchy, one of the most difficult things can be keep-
ing track of where each pointer has been allocated. Umpire’s instrospection capability keeps track of this information,
as well as other useful bits and pieces you might want to know.

The umpire::ResourceManager can be used to find the allocator associated with an address:

auto found_allocator = rm.getAllocator(data);

Once you have this, it’s easy to query things like the name of the Allocator or find out the associated
umpire::Platform, which can help you decide where to operate on this data:

std::cout << "According to the ResourceManager, the Allocator used is "
<< found_allocator.getName() << ", which has the Platform "
<< static_cast<int>(found_allocator.getPlatform()) << std::endl;

You can also find out how big the allocation is, in case you forgot:

std::cout << "The size of the allocation is << "
<< found_allocator.getSize(data) << std::endl;

Remember that these functions will work on any allocation made using an Allocator or umpire::TypedAllocator.

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"

int main(int, char**)
{
constexpr std::size_t SIZE = 1024;

auto& rm = umpire::ResourceManager::getInstance();

const std::string destinations[] = {
"HOST"

#if defined(UMPIRE_ENABLE_DEVICE)
,
"DEVICE"

#endif
#if defined(UMPIRE_ENABLE_UM)

,
"UM"

#endif
#if defined(UMPIRE_ENABLE_PINNED)

,
"PINNED"

#endif
};

(continues on next page)

18 Chapter 2. Umpire Tutorial

Umpire Documentation, Release 5.0.1

(continued from previous page)

for (auto& destination : destinations) {
auto allocator = rm.getAllocator(destination);
double* data =

static_cast<double*>(allocator.allocate(SIZE * sizeof(double)));

std::cout << "Allocated " << (SIZE * sizeof(double)) << " bytes using the "
<< allocator.getName() << " allocator." << std::endl;

// _sphinx_tag_tut_getallocator_start
auto found_allocator = rm.getAllocator(data);
// _sphinx_tag_tut_getallocator_end

// _sphinx_tag_tut_getinfo_start
std::cout << "According to the ResourceManager, the Allocator used is "

<< found_allocator.getName() << ", which has the Platform "
<< static_cast<int>(found_allocator.getPlatform()) << std::endl;

// _sphinx_tag_tut_getinfo_end

// _sphinx_tag_tut_getsize_start
std::cout << "The size of the allocation is << "

<< found_allocator.getSize(data) << std::endl;
// _sphinx_tag_tut_getsize_end

allocator.deallocate(data);
}

return 0;
}

2.6 Typed Allocators

Sometimes, you might want to construct an allocator that allocates objects of a specific type. Umpire provides a
umpire::TypedAllocator for this purpose. It can also be used with STL objects like std::vector.

A umpire::TypedAllocator is constructed from any existing Allocator, and provides the same interface as the
normal umpire::Allocator. However, when you call allocate, this argument is the number of objects you want to
allocate, no the total number of bytes:

umpire::TypedAllocator<double> double_allocator{alloc};

double* my_doubles = double_allocator.allocate(1024);

double_allocator.deallocate(my_doubles, 1024);

To use this allocator with an STL object like a vector, you need to pass the type as a template parameter for the vector,
and also pass the allocator to the vector when you construct it:

std::vector<double, umpire::TypedAllocator<double>> my_vector{
double_allocator};

2.6. Typed Allocators 19

Umpire Documentation, Release 5.0.1

One thing to remember is that whatever allocator you use with an STL object, it must be compatible with the inner
workings of that object. For example, if you try and use a “DEVICE”-based allocator it will fail, since the vector will
try and construct each element. The CPU cannot access DEVICE memory in most systems, thus causing a segfault.
Be careful!

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/TypedAllocator.hpp"

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();
auto alloc = rm.getAllocator("HOST");

// _sphinx_tag_tut_typed_alloc_start
umpire::TypedAllocator<double> double_allocator{alloc};

double* my_doubles = double_allocator.allocate(1024);

double_allocator.deallocate(my_doubles, 1024);
// _sphinx_tag_tut_typed_alloc_end

// _sphinx_tag_tut_vector_alloc_start
std::vector<double, umpire::TypedAllocator<double>> my_vector{

double_allocator};
// _sphinx_tag_tut_vector_alloc_end

my_vector.resize(100);

return 0;
}

2.7 Replay

Umpire provides a lightweight replay capability that can be used to investigate performance of particular allocation
patterns and reproduce bugs.

20 Chapter 2. Umpire Tutorial

Umpire Documentation, Release 5.0.1

2.7.1 Input Example

A log can be captured and stored as a JSON file, then used as input to the replay application (available under the bin
directory). The replay program will read the replay log, and recreate the events that occured as part of the run that
generated the log.

The file tut_replay.cpp makes a umpire::strategy::QuickPool:

auto allocator = rm.getAllocator("HOST");
auto pool =

rm.makeAllocator<umpire::strategy::QuickPool>("pool", allocator);

This allocator is used to perform some randomly sized allocations, and later free them:

std::generate(allocations.begin(), allocations.end(),
[&]() { return pool.allocate(random_number()); });

for (auto& ptr : allocations)
pool.deallocate(ptr);

2.7.2 Running the Example

Running this program:

UMPIRE_REPLAY="On" ./bin/examples/tutorial/tut_replay > tut_replay_log.json

will write Umpire replay events to the file tut_replay_log.json. You can see that this file contains JSON formatted
lines.

2.7.3 Replaying the session

Loading this file with the replay program will replay this sequence of umpire::Allocator creation, allocations,
and deallocations:

./bin/replay -i ../tutorial/examples/tut_replay_log.json

We also have a tutorial for the C interface to Umpire. Complete example listings are available, and will be compiled if
you have configured Umpire with -DENABLE_C=On.

The C tutorial assumes an understanding of C, and it would be useful to have some knowledge of C++ to understand
how the C API maps to the native C++ classes that Umpire provides.

2.8 C API: Allocators

The fundamental concept for accessing memory through Umpire is an umpire:Allocator. In C, this means using the
type umpire_allocator. There are corresponding functions that take an umpire_allocator and let you allocate
and deallocate memory.

As with the native C++ interface, all allocators are accessed via the umpire::ResourceManager. In the C API, there
is a corresponding umpire_resourcemanager type. To get an umpire_allocator:

2.8. C API: Allocators 21

Umpire Documentation, Release 5.0.1

umpire_resourcemanager rm;
umpire_resourcemanager_get_instance(&rm);

umpire_allocator allocator;
umpire_resourcemanager_get_allocator_by_name(&rm, "HOST", &allocator);

Once you have an umpire_allocator, you can use it to allocate and deallocate memory:

double* data = (double*) umpire_allocator_allocate(&allocator, SIZE*sizeof(double));

printf("Allocated %lu bytes using the %s allocator...", (SIZE*sizeof(double)), umpire_
→˓allocator_get_name(&allocator));

umpire_allocator_deallocate(&allocator, data);

In the next section, we will see how to allocate memory in different places.

2.9 C API: Resources

Each computer system will have a number of distinct places in which the system will allow you to allocate memory. In
Umpire’s world, these are memory resources. A memory resource can correspond to a hardware resource, but can also
be used to identify memory with a particular characteristic, like “pinned” memory in a GPU system.

When you configure Umpire, it will create umpire::resource::MemoryResource s according to what is available
on the system you are building for. For each resource, Umpire will create a default umpire_allocator that you
can use. In the previous example, we were actually using an umpire_allocator created for the memory resource
corresponding to the CPU memory.

The easiest way to identify resources is by name. The “HOST” resource is always available. In a system configured
with NVIDIA GPUs, we also have resources that represent global GPU memory (“DEVICE”), unified memory that
can be accessed by the CPU or GPU (“UM”) and host memory that can be accessed by the GPU (“PINNED”);

Umpire will create an umpire_allocator for each of these resources, and you can get them using the same
umpire_resourcemanager_get_allocator_by_name call you saw in the previous example:

Note that every allocator supports the same calls, no matter which resource it is for, this means we can run the same
code for all the resources available in the system:

As you can see, we can call this function with any valid resource name:

In the next example, we will learn how to move data between resources using operations.

2.10 C API: Pools

Frequently allocating and deallocating memory can be quite costly, especially when you are making large allocations
or allocating on different memory resources. To mitigate this, Umpire provides allocation strategies that can be used
to customize how data is obtained from the system.

In this example, we will look at creating a pool that can fulfill requests for allocations of any size. To create a new
umpire_allocator using the pooling algorithm:

The two arguments are the size of the initial block that is allocated, and the minimum size of any future blocks. We
have to provide a new name for the allocator, as well as the underlying umpire_allocator we wish to use to grab
memory.

22 Chapter 2. Umpire Tutorial

Umpire Documentation, Release 5.0.1

Once you have the allocator, you can allocate and deallocate memory as before, without needing to worry about the
underlying algorithm used for the allocations:

This pool can be created with any valid underlying umpire_allocator.

Finally, we have a tutorial for Umpire’s FORTRAN API. These examples will be compiled when configuring with
-DENABLE_FORTRAN=On. The FORTRAN tutorial assumes an understanding of FORTRAN. Familiarity with the FOR-
TRAN’s ISO C bindings can be useful for understanding why the interface looks the way it does.

2.11 FORTRAN API: Allocators

The fundamental concept for accessing memory through Umpire is an umpire:Allocator. In FORTRAN, this means
using the type UmpireAllocator. This type provides an allocate_pointer function to allocate raw memory, and a
generic allocate procedure that takes an array pointer and an array of dimensions and will allocate the correct amount
of memory.

As with the native C++ interface, all allocators are accessed via the umpire::ResourceManager. In the FORTRAN
API, there is a corresponding UmpireResourceManager type. To get an UmpireAllocator:

In this example we fetch the allocator by id, using 0 means you will always get a host allocator. Once you have an
UmpireAllocator, you can use it to allocate and deallocate memory:

In this case, we allocate a one-dimensional array using the generic allocate function.

2.11. FORTRAN API: Allocators 23

Umpire Documentation, Release 5.0.1

24 Chapter 2. Umpire Tutorial

CHAPTER

THREE

ADVANCED CONFIGURATION

In addition to the normal options provided by CMake, Umpire uses some additional configuration arguments to control
optional features and behavior. Each argument is a boolean option, and can be turned on or off:

-DENABLE_CUDA=Off

Here is a summary of the configuration options, their default value, and meaning:

Variable Default Meaning
ENABLE_CUDA Off Enable CUDA support
ENABLE_HIP Off Enable HIP support
ENABLE_NUMA Off Enable NUMA support
ENABLE_FILE_RESOURCE Off Enable FILE support
ENABLE_TESTS On Build test executables
ENABLE_BENCHMARKS On Build benchmark programs
ENABLE_LOGGING On Enable Logging within Umpire
ENABLE_SLIC Off Enable SLIC logging
ENABLE_BACKTRACE Off Enable backtraces for allocations
ENABLE_BACKTRACE_SYMBOLS Off Enable symbol lookup for backtraces
ENABLE_TOOLS Off Enable tools like replay
ENABLE_DOCS Off Build documentation (requires Sphinx and/or Doxy-

gen)
ENABLE_C Off Build the C API
ENABLE_FORTRAN Off Build the Fortran API
ENABLE_PERFORMANCE_TESTS Off Build and run performance tests
ENABLE_IPC_SHARED_MEMORY EN-

ABLE_MPI
Enable Shared Memory support

ENABLE_ASAN Off Enable ASAN support

These arguments are explained in more detail below:

• ENABLE_CUDA This option enables support for NVIDIA GPUs using the CUDA programming model. If Umpire
is built without CUDA or HIP support, then only the HOST allocator is available for use.

• ENABLE_HIP This option enables support for AMD GPUs using the ROCm stack and HIP programming model.
If Umpire is built without CUDA or HIP support, then only the HOST allocator is available for use.

• ENABLE_NUMA This option enables support for NUMA. The umpire::strategy::NumaPolicy is available
when built with this option, which may be used to locate the allocation to a specific node.

• ENABLE_FILE_RESOURCE This option will allow the build to make all File Memory Allocation files. If Umpire
is built without FILE, CUDA or HIP support, then only the HOST allocator is available for use.

25

Umpire Documentation, Release 5.0.1

• ENABLE_TESTS This option controls whether or not test executables will be built.

• ENABLE_BENCHMARKS This option will build the benchmark programs used to test performance.

• ENABLE_LOGGING This option enables usage of Logging services for Umpire

• ENABLE_SLIC This option enables usage of logging services provided by SLIC.

• ENABLE_BACKTRACE This option enables collection of backtrace information for each allocation.

• ENABLE_BACKTRACE_SYMBOLS This option enables symbol information to be provided with backtraces. This
requires -ldl to be specified for using programs.

• ENABLE_TOOLS Enable development tools for Umpire (replay, etc.)

• ENABLE_DOCS Build user documentation (with Sphinx) and code documentation (with Doxygen)

• ENABLE_C Build the C API, this allows accessing Umpire Allocators and the ResourceManager through a C
interface.

• ENABLE_FORTRAN Build the Fortran API.

• ENABLE_PERFORMANCE_TESTS Build and run performance tests

• ENABLE_IPC_SHARED_MEMORY This option enables support for interprocess shared memory. Currently, this
feature only exists for for HOST memory.

• ENABLE_ASAN This option enables address sanitization checks within Umpire by compilers that support options
like -fsanitize=address

26 Chapter 3. Advanced Configuration

CHAPTER

FOUR

UMPIRE COOKBOOK

This section provides a set of recipes that show you how to accomplish specific tasks using Umpire. The main focus is
things that can be done by composing different parts of Umpire to achieve a particular use case.

Examples include being able to grow and shrink a pool, constructing Allocators that have introspection disabled for
improved performance, and applying CUDA “memory advise” to all the allocations in a particular pool.

4.1 Growing and Shrinking a Pool

When sharing a pool between different parts of your application, or even between co-ordinating libraries in the same
application, you might want to grow and shrink a pool on demand. By limiting the size of a pool using device memory,
you leave more space on the GPU for “unified memory” to move data there.

The basic idea is to create a pool that allocates a block of your minimum size, and then allocate a single word from this
pool to ensure the initial block is never freed:

auto pooled_allocator = rm.makeAllocator<umpire::strategy::QuickPool>(
"GPU_POOL", allocator, 4ul * 1024ul * 1024ul * 1024ul + 1);

To increase the pool size you can preallocate a large chunk and then immediately free it. The pool will retain this
memory for use by later allocations:

void* grow = pooled_allocator.allocate(8ul * 1024ul * 1024ul * 1024ul);
pooled_allocator.deallocate(grow);

std::cout << "Pool has allocated " << pooled_allocator.getActualSize()
<< " bytes of memory. " << pooled_allocator.getCurrentSize()
<< " bytes are used" << std::endl;

Assuming that there are no allocations left in the larger “chunk” of the pool, you can shrink the pool back down to the
initial size by calling umpire::Allocator::release():

pooled_allocator.release();
std::cout << "Pool has allocated " << pooled_allocator.getActualSize()

<< " bytes of memory. " << pooled_allocator.getCurrentSize()
<< " bytes are used" << std::endl;

The complete example is included below:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire

(continues on next page)

27

Umpire Documentation, Release 5.0.1

(continued from previous page)

// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include <iostream>

#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/QuickPool.hpp"
#include "umpire/util/Macros.hpp"

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();

auto allocator = rm.getAllocator("DEVICE");

//
// Create a 4 Gb pool and reserve one word (to maintain aligment)
//
// _sphinx_tag_tut_create_pool_start
auto pooled_allocator = rm.makeAllocator<umpire::strategy::QuickPool>(

"GPU_POOL", allocator, 4ul * 1024ul * 1024ul * 1024ul + 1);
// _sphinx_tag_tut_create_pool_end

void* hold = pooled_allocator.allocate(64);
UMPIRE_USE_VAR(hold);

std::cout << "Pool has allocated " << pooled_allocator.getActualSize()
<< " bytes of memory. " << pooled_allocator.getCurrentSize()
<< " bytes are used" << std::endl;

//
// Grow pool to ~12 by grabbing a 8Gb chunk
//
// _sphinx_tag_tut_grow_pool_start
void* grow = pooled_allocator.allocate(8ul * 1024ul * 1024ul * 1024ul);
pooled_allocator.deallocate(grow);

std::cout << "Pool has allocated " << pooled_allocator.getActualSize()
<< " bytes of memory. " << pooled_allocator.getCurrentSize()
<< " bytes are used" << std::endl;

// _sphinx_tag_tut_grow_pool_end

//
// Shrink pool back to ~4Gb
//
// _sphinx_tag_tut_shrink_pool_back_start
pooled_allocator.release();
std::cout << "Pool has allocated " << pooled_allocator.getActualSize()

<< " bytes of memory. " << pooled_allocator.getCurrentSize()
<< " bytes are used" << std::endl;

(continues on next page)

28 Chapter 4. Umpire Cookbook

Umpire Documentation, Release 5.0.1

(continued from previous page)

// _sphinx_tag_tut_shrink_pool_back_end

return 0;
}

4.2 Disable Introspection

If you know that you won’t be using any of Umpire’s introspection capabalities for allocations that come from a par-
ticular umpire::Allocator, you can turn off the introspection and avoid the overhead of tracking the associated
metadata.

Warning: Disabling introspection means that allocations from this Allocator cannot be used for operations, or
size and location queries.

In this recipe, we look at disabling introspection for a pool. To turn off introspection, you pass a boolean as the second
template parameter to the umpire::ResourceManager::makeAllocator() method:

auto pooled_allocator =
rm.makeAllocator<umpire::strategy::QuickPool, false>(

"NO_INTROSPECTION_POOL", allocator);

Remember that disabling introspection will stop tracking the size of allocations made from the pool, so the
umpire::Allocator::getCurrentSize() method will return 0:

std::cout << "Pool has allocated " << pooled_allocator.getActualSize()
<< " bytes of memory. " << pooled_allocator.getCurrentSize()
<< " bytes are used" << std::endl;

The complete example is included below:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include <iostream>

#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/QuickPool.hpp"
#include "umpire/util/Macros.hpp"

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();

auto allocator = rm.getAllocator("HOST");

(continues on next page)

4.2. Disable Introspection 29

Umpire Documentation, Release 5.0.1

(continued from previous page)

//
// Create a pool with introspection disabled (can improve performance)
//
// _sphinx_tag_tut_nointro_start
auto pooled_allocator =

rm.makeAllocator<umpire::strategy::QuickPool, false>(
"NO_INTROSPECTION_POOL", allocator);

// _sphinx_tag_tut_nointro_end

void* data = pooled_allocator.allocate(1024);

// _sphinx_tag_tut_getsize_start
std::cout << "Pool has allocated " << pooled_allocator.getActualSize()

<< " bytes of memory. " << pooled_allocator.getCurrentSize()
<< " bytes are used" << std::endl;

// _sphinx_tag_tut_getsize_end

pooled_allocator.deallocate(data);

return 0;
}

4.3 Apply Memory Advice to a Pool

When using unified memory on systems with CUDA GPUs, various types of memory advice can be applied to modify
how the CUDA runtime moves this memory around between the CPU and GPU. One type of advice that can be applied
is “preferred location”, and you can specificy where you want the preferred location of the memory to be. This can be
useful for ensuring that the memory is kept on the GPU.

By creating a pool on top of an umpire::strategy::AllocationAdvisor, you can amortize the cost of applying
memory advice:

//
// Create an allocator that applied "PREFFERED_LOCATION" advice to set the
// GPU as the preferred location.
//
auto preferred_location_allocator =

rm.makeAllocator<umpire::strategy::AllocationAdvisor>(
"preferred_location_device", allocator, "PREFERRED_LOCATION");

//
// Create a pool using the preferred_location_allocator. This makes all
// allocations in the pool have the same preferred location, the GPU.
//
auto pooled_allocator = rm.makeAllocator<umpire::strategy::QuickPool>(

"GPU_POOL", preferred_location_allocator);

The complete example is included below:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire

(continues on next page)

30 Chapter 4. Umpire Cookbook

Umpire Documentation, Release 5.0.1

(continued from previous page)

// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include <iostream>

#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/AllocationAdvisor.hpp"
#include "umpire/strategy/QuickPool.hpp"
#include "umpire/util/Macros.hpp"

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();

auto allocator = rm.getAllocator("UM");

// _sphinx_tag_tut_pool_advice_start
//
// Create an allocator that applied "PREFFERED_LOCATION" advice to set the
// GPU as the preferred location.
//
auto preferred_location_allocator =

rm.makeAllocator<umpire::strategy::AllocationAdvisor>(
"preferred_location_device", allocator, "PREFERRED_LOCATION");

//
// Create a pool using the preferred_location_allocator. This makes all
// allocations in the pool have the same preferred location, the GPU.
//
auto pooled_allocator = rm.makeAllocator<umpire::strategy::QuickPool>(

"GPU_POOL", preferred_location_allocator);
// _sphinx_tag_tut_pool_advice_end

UMPIRE_USE_VAR(pooled_allocator);

return 0;
}

4.4 Apply Memory Advice with a Specific Device ID

When using unified memory on systems with CUDA GPUs, various types of memory advice can be applied to modify
how the CUDA runtime moves this memory around between the CPU and GPU. When applying memory advice, a
device ID can be used to specific which device the advice relates to. One type of advice that can be applied is “preferred
location”, and you can specificy where you want the preferred location of the memory to be. This can be useful for
ensuring that the memory is kept on the GPU.

By passing a specific device id when constructing an umpire::strategy::AllocationAdvisor, you can ensure
that the advice will be applied with respect to that device

4.4. Apply Memory Advice with a Specific Device ID 31

Umpire Documentation, Release 5.0.1

//
// Create an allocator that applied "PREFFERED_LOCATION" advice to set a
// specific GPU device as the preferred location.
//
// In this case, device #2.
//
const int device_id = 2;

try {
auto preferred_location_allocator =

rm.makeAllocator<umpire::strategy::AllocationAdvisor>(
"preferred_location_device_2", allocator, "PREFERRED_LOCATION",
device_id);

The complete example is included below:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include <iostream>

#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/AllocationAdvisor.hpp"
#include "umpire/util/Exception.hpp"

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();

auto allocator = rm.getAllocator("UM");

// _sphinx_tag_tut_device_advice_start
//
// Create an allocator that applied "PREFFERED_LOCATION" advice to set a
// specific GPU device as the preferred location.
//
// In this case, device #2.
//
const int device_id = 2;

try {
auto preferred_location_allocator =

rm.makeAllocator<umpire::strategy::AllocationAdvisor>(
"preferred_location_device_2", allocator, "PREFERRED_LOCATION",
device_id);

// _sphinx_tag_tut_device_advice_end
void* data = preferred_location_allocator.allocate(1024);

(continues on next page)

32 Chapter 4. Umpire Cookbook

Umpire Documentation, Release 5.0.1

(continued from previous page)

preferred_location_allocator.deallocate(data);
} catch (umpire::util::Exception& e) {
std::cout << "Couldn't create Allocator with device_id = " << device_id

<< std::endl;

std::cout << e.message() << std::endl;
}

return 0;
}

4.5 Moving Host Data to Managed Memory

When using a system with NVIDIA GPUs, you may realize that some host data should be moved to unified memory in
order to make it accessible by the GPU. You can do this with the umpire::ResourceManager::move() operation:

double* um_data = static_cast<double*>(rm.move(host_data, um_allocator));

The move operation will copy the data from host memory to unified memory, allocated using the provided
um_allocator. The original allocation in host memory will be deallocated. The complete example is included below:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"

int main(int, char**)
{
constexpr std::size_t SIZE = 1024;

auto& rm = umpire::ResourceManager::getInstance();
auto allocator = rm.getAllocator("HOST");

//
// Allocate host data
//
double* host_data =

static_cast<double*>(allocator.allocate(SIZE * sizeof(double)));

//
// Move data to unified memory
//
auto um_allocator = rm.getAllocator("UM");
// _sphinx_tag_tut_move_host_to_managed_start
double* um_data = static_cast<double*>(rm.move(host_data, um_allocator));
// _sphinx_tag_tut_move_host_to_managed_end

(continues on next page)

4.5. Moving Host Data to Managed Memory 33

Umpire Documentation, Release 5.0.1

(continued from previous page)

//
// Deallocate um_data, host_data is already deallocated by move operation.
//
rm.deallocate(um_data);

return 0;
}

4.6 Improving DynamicPoolList Performance with a Coalesce Heuris-
tic

As needed, the umpire::strategy::DynamicPoolListwill continue to allocate blocks to satisfy allocation requests
that cannot be satisfied by blocks currently in the pool it is managing. Under certain application-specific memory al-
location patterns, fragmentation within the blocks or allocations that are for sizes greater than the size of the largest
available block can cause the pool to grow too large. For example, a problematic allocation pattern is when an ap-
plication makes several allocations of incrementing size where each allocation is larger than the previous block size
allocated.

The umpire::strategy::DynamicPoolList::coalesce() method may be used to cause the
umpire::strategy::DynamicPoolList to coalesce the releasable blocks into a single larger block. This is
accomplished by: tallying the size of all blocks without allocations against them, releasing those blocks back to the
memory resource, and creating a new block of the previously tallied size.

Applications may offer a heuristic function to the umpire::strategy::DynamicPoolList during instantiation that
will return true whenever a pool reaches a specific threshold of releasable bytes (represented by completely free blocks)
to the total size of the pool. The DynamicPoolList will call this heuristic function just before it returns from its
umpire::strategy::DynamicPoolList::deallocate() method and when the function returns true, the Dynam-
icPoolList will call the umpire::strategy::DynamicPoolList::coalesce() method.

The default heuristic of 100 will cause the DynamicPoolList to automatically coalesce when all of the bytes in the pool
are releasable and there is more than one block in the pool.

A heuristic of 0 will cause the DynamicPoolList to never automatically coalesce.

Creation of the heuristic function is accomplished by:

//
// Create a heuristic function that will return true to the DynamicPoolList
// object when the threshold of releasable size to total size is 75%.
//
auto heuristic_function =

umpire::strategy::DynamicPoolList::percent_releasable(75);

The heuristic function is then provided as a parameter when the object is instantiated:

//
// Create a pool with an initial block size of 1 Kb and 1 Kb block size for
// all subsequent allocations and with our previously created heuristic
// function.
//
auto pooled_allocator = rm.makeAllocator<umpire::strategy::DynamicPoolList>(

"HOST_POOL", allocator, 1024ul, 1024ul, 16, heuristic_function);

34 Chapter 4. Umpire Cookbook

Umpire Documentation, Release 5.0.1

The complete example is included below:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/DynamicPoolList.hpp"
#include "umpire/util/Macros.hpp"
#include "umpire/util/wrap_allocator.hpp"

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();

auto allocator = rm.getAllocator("HOST");

// _sphinx_tag_tut_creat_heuristic_fun_start
//
// Create a heuristic function that will return true to the DynamicPoolList
// object when the threshold of releasable size to total size is 75%.
//
auto heuristic_function =

umpire::strategy::DynamicPoolList::percent_releasable(75);
// _sphinx_tag_tut_creat_heuristic_fun_end

// _sphinx_tag_tut_use_heuristic_fun_start
//
// Create a pool with an initial block size of 1 Kb and 1 Kb block size for
// all subsequent allocations and with our previously created heuristic
// function.
//
auto pooled_allocator = rm.makeAllocator<umpire::strategy::DynamicPoolList>(

"HOST_POOL", allocator, 1024ul, 1024ul, 16, heuristic_function);
// _sphinx_tag_tut_use_heuristic_fun_end

//
// Obtain a pointer to our specific DynamicPoolList instance in order to see the
// DynamicPoolList-specific statistics
//
auto dynamic_pool =

umpire::util::unwrap_allocator<umpire::strategy::DynamicPoolList>(
pooled_allocator);

void* a[4];
for (int i = 0; i < 4; ++i)
a[i] = pooled_allocator.allocate(1024);

for (int i = 0; i < 4; ++i) {
pooled_allocator.deallocate(a[i]);

(continues on next page)

4.6. Improving DynamicPoolList Performance with a Coalesce Heuristic 35

Umpire Documentation, Release 5.0.1

(continued from previous page)

std::cout << "Pool has " << pooled_allocator.getActualSize()
<< " bytes of memory. " << pooled_allocator.getCurrentSize()
<< " bytes are used. " << dynamic_pool->getBlocksInPool()
<< " blocks are in the pool. "
<< dynamic_pool->getReleasableSize() << " bytes are releaseable. "
<< std::endl;

}

return 0;
}

4.7 Move Allocations Between NUMA Nodes

When using NUMA (cache coherent or non uniform memory access) systems, there are different latencies to parts of the
memory. From an application perspective, the memory looks the same, yet especially for high-performance computing
it is advantageous to have finer control. malloc() attempts to allocate memory close to your node, but it can make no
guarantees. Therefore, Linux provides both a process-level interface for setting NUMA policies with the system utility
numactl, and a fine-grained interface with libnuma. These interfaces work on ranges of memory in multiples of the
page size, which is the length or unit of address space loaded into a processor cache at once.

A page range may be bound to a NUMA node using the umpire::strategy::NumaPolicy. It can therefore also be
moved between NUMA nodes using the umpire::ResourceManager::move() with a different allocator. The power
of using such an abstraction is that the NUMA node can be associated with a device, in which case the memory is
moved to, for example, GPU memory.

In this recipe we create an allocation bound to a NUMA node, and move it to another NUMA node.

The complete example is included below:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include <iostream>

#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/NumaPolicy.hpp"
#include "umpire/util/Macros.hpp"
#include "umpire/util/numa.hpp"

#if defined(UMPIRE_ENABLE_CUDA)
#include <cuda_runtime_api.h>
#endif

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();

(continues on next page)

36 Chapter 4. Umpire Cookbook

Umpire Documentation, Release 5.0.1

(continued from previous page)

const std::size_t alloc_size = 5 * umpire::get_page_size();

// Get a list of the host NUMA nodes (e.g. one per socket)
auto host_nodes = umpire::numa::get_host_nodes();

if (host_nodes.size() < 1) {
UMPIRE_ERROR("No NUMA nodes detected");

}

// Create an allocator on the first NUMA node
auto host_src_alloc = rm.makeAllocator<umpire::strategy::NumaPolicy>(

"host_numa_src_alloc", rm.getAllocator("HOST"), host_nodes[0]);

// Create an allocation on that node
void* src_ptr = host_src_alloc.allocate(alloc_size);

if (host_nodes.size() > 1) {
// Create an allocator on another host NUMA node.
auto host_dst_alloc = rm.makeAllocator<umpire::strategy::NumaPolicy>(

"host_numa_dst_alloc", rm.getAllocator("HOST"), host_nodes[1]);

// Move the memory
void* dst_ptr = rm.move(src_ptr, host_dst_alloc);

// The pointer shouldn't change even though the memory location changes
if (dst_ptr != src_ptr) {
UMPIRE_ERROR("Pointers should match");

}

// Touch it
rm.memset(dst_ptr, 0);

// Verify NUMA node
if (umpire::numa::get_location(dst_ptr) != host_nodes[1]) {
UMPIRE_ERROR("Move was unsuccessful");

}
}

#if defined(UMPIRE_ENABLE_DEVICE)
// Get a list of the device nodes
auto device_nodes = umpire::numa::get_device_nodes();

if (device_nodes.size() > 0) {
// Create an allocator on the first device NUMA node. Note that
// this still requires using the "HOST" allocator. The allocations
// are moved after the address space is reserved.
auto device_alloc = rm.makeAllocator<umpire::strategy::NumaPolicy>(

"device_numa_src_alloc", rm.getAllocator("HOST"), device_nodes[0]);

// Move the memory
void* dst_ptr = rm.move(src_ptr, device_alloc);

(continues on next page)

4.7. Move Allocations Between NUMA Nodes 37

Umpire Documentation, Release 5.0.1

(continued from previous page)

// The pointer shouldn't change even though the memory location changes
if (dst_ptr != src_ptr) {
UMPIRE_ERROR("Pointers should match");

}

// Touch it -- this currently uses the host memset operation (thus, copying
// the memory back)
rm.memset(dst_ptr, 0);

// Verify NUMA node
if (umpire::numa::get_location(dst_ptr) != device_nodes[0]) {
UMPIRE_ERROR("Move was unsuccessful");

}
}

#endif

// Clean up by deallocating from the original allocator, since the
// allocation record is still associated with that allocator
host_src_alloc.deallocate(src_ptr);

return 0;
}

4.8 Determining the Largest Block of Available Memory in Pool

The umpire::strategy::QuickPool provides a umpire::strategy::QuickPool::getLargestAvailableBlock()
that may be used to determine the size of the largest block currently available for allocation within the pool.
To call this function, you must get the pointer to the umpire::strategy::AllocationStrategy from the
umpire::Allocator:

auto pool = rm.makeAllocator<umpire::strategy::QuickPool>(
"pool", rm.getAllocator("HOST"));

auto quick_pool =
umpire::util::unwrap_allocator<umpire::strategy::QuickPool>(pool);

Once you have the pointer to the appropriate strategy, you can call the function:

std::cout << "Largest available block in pool is "
<< quick_pool->getLargestAvailableBlock() << " bytes in size"
<< std::endl;

The complete example is included below:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//

(continues on next page)

38 Chapter 4. Umpire Cookbook

Umpire Documentation, Release 5.0.1

(continued from previous page)

#include <iostream>

#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/QuickPool.hpp"
#include "umpire/util/Exception.hpp"
#include "umpire/util/wrap_allocator.hpp"

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();

// _sphinx_tag_tut_unwrap_start
auto pool = rm.makeAllocator<umpire::strategy::QuickPool>(

"pool", rm.getAllocator("HOST"));

auto quick_pool =
umpire::util::unwrap_allocator<umpire::strategy::QuickPool>(pool);

// _sphinx_tag_tut_unwrap_end

if (quick_pool == nullptr) {
UMPIRE_ERROR(pool.getName() << " is not a QuickPool");

}

auto ptr = pool.allocate(1024);

// _sphinx_tag_tut_get_info_start
std::cout << "Largest available block in pool is "

<< quick_pool->getLargestAvailableBlock() << " bytes in size"
<< std::endl;

// _sphinx_tag_tut_get_info_end

pool.deallocate(ptr);

return 0;
}

4.9 Coalescing Pool Memory

The umpire::strategy::QuickPool provides a umpire::strategy::QuickPool::coalesce() that can be
used to release unused memory and allocate a single large block that will be able to satisfy allocations
up to the previously observed high-watermark. To call this function, you must get the pointer to the
umpire::strategy::AllocationStrategy from the umpire::Allocator:

auto quick_pool =
umpire::util::unwrap_allocator<umpire::strategy::QuickPool>(pool);

Once you have the pointer to the appropriate strategy, you can call the function:

quick_pool->coalesce();

4.9. Coalescing Pool Memory 39

Umpire Documentation, Release 5.0.1

The complete example is included below:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include <iostream>

#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/QuickPool.hpp"
#include "umpire/util/Exception.hpp"
#include "umpire/util/wrap_allocator.hpp"

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();

auto pool = rm.makeAllocator<umpire::strategy::QuickPool>(
"pool", rm.getAllocator("HOST"));

// _sphinx_tag_tut_unwrap_strategy_start
auto quick_pool =

umpire::util::unwrap_allocator<umpire::strategy::QuickPool>(pool);
// _sphinx_tag_tut_unwrap_strategy_end

if (quick_pool) {
// _sphinx_tag_tut_call_coalesce_start
quick_pool->coalesce();
// _sphinx_tag_tut_call_coalesce_end

} else {
UMPIRE_ERROR(pool.getName() << " is not a QuickPool, cannot coalesce!");

}

return 0;
}

4.10 Building a Pinned Memory Pool in FORTRAN

In this recipe, we show you how to build a pool in pinned memory using Umpire’s FORTRAN API. These kinds of
pools can be useful for allocating buffers to be used in communication routines in various scientific applications.

Building the pool takes two steps: 1) getting a base “PINNED” allocator, and 2) creating the pool:

rm = rm%get_instance()
base_allocator = rm%get_allocator_by_name("PINNED")

pinned_pool = rm%make_allocator_pool("PINNED_POOL", &
base_allocator, &
512_8*1024_8, &

(continues on next page)

40 Chapter 4. Umpire Cookbook

Umpire Documentation, Release 5.0.1

(continued from previous page)

1024_8)

The complete example is included below:

!!!
! Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
! project contributors. See the COPYRIGHT file for details.
!
! SPDX-License-Identifier: (MIT)
!!!

program umpire_f_pinned_pool
use umpire_mod
implicit none
logical ok

integer(C_INT), pointer, dimension(:) :: array(:)
type(UmpireAllocator) base_allocator
type(UmpireAllocator) pinned_pool
type(UmpireResourceManager) rm

! _sphinx_tag_tut_pinned_fortran_start
rm = rm%get_instance()
base_allocator = rm%get_allocator_by_name("PINNED")

pinned_pool = rm%make_allocator_pool("PINNED_POOL", &
base_allocator, &
512_8*1024_8, &
1024_8)

! _sphinx_tag_tut_pinned_fortran_end

call pinned_pool%allocate(array, [10])
end program umpire_f_pinned_pool

4.11 Visualizing Allocators

The python script plot_allocations.py is included with Umpire to plot allocations. This script uses series of three
arguments: an output file with allocation records, a color, and an alpha (transparency) value 0.0-1.0. Although these
could be used to plot records from a single allocator, 3 arguments, it can also be used to overlay multiple allocators, by
passing 3n arguments after the script name. In this cookbook we use this feature to visualize a pooled allocator.

The cookbook generates two files, allocator.log and pooled_allocator.log, that contain the allocation records from the
underlying allocator and the pool. These can then be plotted using a command similar to the following:

tools/plot_allocations allocator.log gray 0.2 pooled_allocator.log purple 0.8

That script uses Python and Matplotlib to generate the following image

The complete example is included below:

4.11. Visualizing Allocators 41

Umpire Documentation, Release 5.0.1

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include <fstream>

#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/Umpire.hpp"
#include "umpire/strategy/QuickPool.hpp"

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();

auto allocator = rm.getAllocator("HOST");
auto pooled_allocator = rm.makeAllocator<umpire::strategy::QuickPool>(

"HOST_POOL", allocator, 1024 * 16);

void* a[4];
for (int i = 0; i < 4; ++i)
a[i] = pooled_allocator.allocate(1024);

// Create fragmentation
pooled_allocator.deallocate(a[2]);
a[2] = pooled_allocator.allocate(1024 * 2);

// Output the records from the underlying host allocator
{
std::ofstream out("allocator.log");
umpire::print_allocator_records(allocator, out);
out.close();

}

// Output the records from the pooled allocator
{
std::ofstream out("pooled_allocator.log");
umpire::print_allocator_records(pooled_allocator, out);
out.close();

}

for (int i = 0; i < 4; ++i)
pooled_allocator.deallocate(a[i]);

// Visualize this using the python script. Example usage:
// tools/analysis/plot_allocations allocator.log gray 0.2 pooled_allocator.log
// purple 0.8

return 0;
}

42 Chapter 4. Umpire Cookbook

Umpire Documentation, Release 5.0.1

4.12 Mixed Pool Creation and Algorithm Basics

This recipe shows how to create a default mixed pool, and one that might be tailored to a specific application’s needs.
Mixed pools allocate in an array of umpire::strategy::FixedPool for small allocations, because these have sim-
pler bookkeeping and are very fast, and a umpire::strategy::QuickPool for larger allocations.

Note: Because DynamicPoolMap has recently been deprecated, the implementation for MixedPool recently changed
from using DynamicPoolMap to using QuickPool instead. Although DynamicPoolMap is still supported, QuickPool is
encouraged.

The class umpire::strategy::MixedPool uses a generic choice of umpire::strategy::FixedPool of size 256
bytes to 4MB in increments of powers of 2, while umpire::strategy::MixedPoolImpl has template arguments
that select the first, power of 2 increment, and last fixed pool size.

The complete example is included below:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include <iostream>

#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/MixedPool.hpp"

int main(int, char **)
{
auto &rm = umpire::ResourceManager::getInstance();
auto allocator = rm.getAllocator("HOST");

/*
* Create a default mixed pool.
*/
auto default_mixed_allocator = rm.makeAllocator<umpire::strategy::MixedPool>(

"default_mixed_pool", allocator);

UMPIRE_USE_VAR(default_mixed_allocator);

/*
* Create a mixed pool using fixed pool bins of size 2^8 = 256 Bytes
* to 2^14 = 16 kB in increments of 5x, where each individual fixed
* pool is kept under 4MB in size to begin.
*/
auto custom_mixed_allocator = rm.makeAllocator<umpire::strategy::MixedPool>(

"custom_mixed_pool", allocator, 256, 16 * 1024, 4 * 1024 * 1024, 5);

/*
* Although this calls for only 4*4=16 bytes, this allocation will
* come from the smallest fixed pool, thus ptr will actually be the

(continues on next page)

4.12. Mixed Pool Creation and Algorithm Basics 43

Umpire Documentation, Release 5.0.1

(continued from previous page)

* first address in a range of 256 bytes.
*/
void *ptr1 = custom_mixed_allocator.allocate(4 * sizeof(int));

/*
* This is too beyond the range of the fixed pools, and therefore is
* allocated from a dynamic pool. The range of address space
* reserved will be exactly what was requested by the allocate()
* method.
*/
void *ptr2 = custom_mixed_allocator.allocate(1 << 18);

/*
* Clean up
*/
custom_mixed_allocator.deallocate(ptr1);
custom_mixed_allocator.deallocate(ptr2);

return 0;
}

4.13 Thread Safe Allocator

If you want thread-safe access to allocations that come from a particular umpire::Allocator, you can create an
instance of a umpire::strategy::ThreadSafeAllocator object that will synchronize access to it.

In this recipe, we look at creating a umpire::strategy::ThreadSafeAllocator for an umpire::strategy::QuickPool object:

auto& rm = umpire::ResourceManager::getInstance();

auto pool = rm.makeAllocator<umpire::strategy::QuickPool>(
"pool", rm.getAllocator("HOST"));

auto thread_safe_pool =
rm.makeAllocator<umpire::strategy::ThreadSafeAllocator>(

"thread_safe_pool", pool);

The complete example is included below:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/QuickPool.hpp"
#include "umpire/strategy/ThreadSafeAllocator.hpp"

int main(int, char**)
(continues on next page)

44 Chapter 4. Umpire Cookbook

Umpire Documentation, Release 5.0.1

(continued from previous page)

{
// _sphinx_tag_tut_thread_safe_start
auto& rm = umpire::ResourceManager::getInstance();

auto pool = rm.makeAllocator<umpire::strategy::QuickPool>(
"pool", rm.getAllocator("HOST"));

auto thread_safe_pool =
rm.makeAllocator<umpire::strategy::ThreadSafeAllocator>(

"thread_safe_pool", pool);
// _sphinx_tag_tut_thread_safe_end

auto allocation = thread_safe_pool.allocate(256);
thread_safe_pool.deallocate(allocation);

return 0;
}

4.14 Using File System Allocator (FILE)

Umpire supports the use of file based memory allocation. When ENABLE_FILE_RESOURCE is enabled, the environment
variables UMPIRE_MEMORY_FILE_DIR can be used to determine where memory can be allocated from:

Variable Default Description
UMPIRE_MEMORY_FILE_DIR ./ Directory to create and allocate file based allocations

Requesting the allocation takes two steps: 1) getting a “FILE” allocator, 2) requesting the amount of memory to allocate.

auto& rm = umpire::ResourceManager::getInstance();
umpire::Allocator alloc = rm.getAllocator("FILE");

std::size_t* A = (std::size_t*)alloc.allocate(sizeof(size_t));

To deallocate:

alloc.deallocate(A);

The complete example is included below:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//

#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"

int main(int, char** argv)
(continues on next page)

4.14. Using File System Allocator (FILE) 45

Umpire Documentation, Release 5.0.1

(continued from previous page)

{
// _sphinx_tag_tut_file_allocate_start
auto& rm = umpire::ResourceManager::getInstance();
umpire::Allocator alloc = rm.getAllocator("FILE");

std::size_t* A = (std::size_t*)alloc.allocate(sizeof(size_t));
// _sphinx_tag_tut_file_allocate_end

// _sphinx_tag_tut_file_deallocate_start
alloc.deallocate(A);
// _sphinx_tag_tut_file_deallocate_end

return 0;
}

4.15 Using Burst Buffers On Lassen

On Lassen, 1) Download the latest version of Umpire 2) request a private node to build:

$ git clone --recursive https://github.com/LLNL/Umpire.git
$ lalloc 1 -stage storage=64

Note that -stage storage=64 is needed in order to work with the Burst Buffers. 3) Additionally, the environment
variable needs to set to $BBPATH :

$ export UMPIRE_MEMORY_FILE_DIR=$BBPATH/

4.15.1 Running File Resource Benchmarks

Continue building Umpire on 1 node, and set the -DENABLE_FILE_RESOURCE=On :

$ mkdir build && cd build
$ lrun -n 1 cmake -DENABLE_FILE_RESOURCE=On -DENABLE_OPENMP=On ../ && make

To run the built-in benchmarks in Umpire from the build run:

$ lrun -n 1 --threads=** ./bin/file_resource_benchmarks ##

** is a placeholder for the amount of threads wanted to run the benchmark on. ## stands for the number of array
elements wanted to be passed through the benchmark. This number can range from 1-100,000,000,000.

Results should appear like:

Array Size: 1 Memory Size: 8e-06 MB
Total Arrays: 3 Total Memory Size: 2.4e-05 MB

HOST
Initialization: 0.0247461 MB/sec
Initialization Time: 0.000969849 sec

(continues on next page)

46 Chapter 4. Umpire Cookbook

Umpire Documentation, Release 5.0.1

(continued from previous page)

Copy: 0.890918 MB/sec
Copy Time: 1.7959e-05 sec

Scale: 0.928074 MB/sec
Scale Time: 1.724e-05 sec

Add: 1.321 MB/sec
Add Time: 1.8168e-05 sec

Triad: 1.24102 MB/sec
Triad Time: 1.9339e-05 sec

Total Time: 0.00104323 sec

FILE
Initialization: 0.210659 MB/sec
Initialization Time: 0.000113928 sec

Copy: 0.84091 MB/sec
Copy Time: 1.9027e-05 sec

Scale: 0.938086 MB/sec
Scale Time: 1.7056e-05 sec

Add: 1.28542 MB/sec
Add Time: 1.8671e-05 sec

Triad: 1.54689 MB/sec
Triad Time: 1.5515e-05 sec

Total Time: 0.000184726 sec

This benchmark run similar to the STREAM Benchmark test and can also run a benchmark for the additional allocators
like UM for CUDA and DEVICE for HIP.

4.16 Getting the Strategy Name

Since every Allocator is represented by the same type after it’s been created, it can be difficult to determine exactly what
kind of strategy the allocator is using. The name of the strategy can be accessed using the Allocator::getStrategyName()
method:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include <iostream>

#include "umpire/Allocator.hpp"
(continues on next page)

4.16. Getting the Strategy Name 47

Umpire Documentation, Release 5.0.1

(continued from previous page)

#include "umpire/ResourceManager.hpp"
#include "umpire/strategy/QuickPool.hpp"

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();
auto allocator = rm.getAllocator("HOST");

// _sphinx_tag_tut_strategy_name_start
//
auto pool = rm.makeAllocator<umpire::strategy::QuickPool>(

"POOL", allocator);
std::cout << pool.getStrategyName() << std::endl;
// _sphinx_tag_tut_strategy_name_end

UMPIRE_USE_VAR(pool);

return 0;
}

48 Chapter 4. Umpire Cookbook

CHAPTER

FIVE

FEATURES

5.1 Allocators

Allocators are the fundamental object used to allocate and deallocate memory using Umpire.

5.2 Allocator Accessibility

The Umpire library provides a variety of umpire::resource::MemoryResource s which can be used to create
umpire::Allocator s depending on what’s available on your system. The resources are explained more on the
Resources page.

Additionally, the platforms that Umpire supports is defined by the CAMP library. This means that there is also a
selection of platforms for which an allocator can be associated with as well. For example, an Allocator created with
the pinned memory resource can be used with the host, cuda, hip, or sycl platforms.

Because of these options, it can be difficult to trace not only which memory resource an allocator has been created with
but also which allocators can be accessed by which platforms. Umpire has the memory resource trait, resource_type,
to provide the ability to query which memory resource is associated with a particular allocator (See example here).

Additionally, Umpire has a function, is_accessible(Platform p, Allocator a), that determines if a particular
allocator is accessible by a particular platform (See example here). The allocator_accessibility.cpp test checks
what platforms are available and confirms that all memory resources which should be accessible to that platform can
actually be accessed and used.

For example, if a umpire::Allocator, alloc, is created with the host memory resource and we
want to know if it should be accessible from the omp_target CAMP platform, then we can use the
is_accessible(Platform::omp_target, alloc) function and find that it should be accessible. The
allocator_access.cpp file demonstrates this functionality for the host platform specifically.

5.2.1 Allocator Inaccessibility Configuration

On a different note, for those allocators that are deemed inaccessible, it may be useful to double check or con-
firm that the allocator can in fact NOT access memory on that given platform. In this case, the cmake flag,
ENABLE_INACCESSIBILITY_TESTS, will need to be turned on.

49

https://umpire.readthedocs.io/en/develop/tutorial/resources.html
https://github.com/LLNL/Umpire/blob/develop/src/umpire/util/Platform.hpp
https://github.com/LLNL/camp/blob/master/include/camp/resource/platform.hpp
https://github.com/LLNL/Umpire/blob/develop/tests/integration/memory_resource_traits_tests.cpp
https://github.com/LLNL/Umpire/blob/develop/tests/integration/allocator_accessibility.cpp

Umpire Documentation, Release 5.0.1

5.2.2 Build and Run Configuration

To build and run these files, either use uberenv or the appropriate cmake flags for the desired platform and then run
ctest -T test -R allocator_accessibility_tests --output-on-failure for the test code and ./bin/
alloc_access for the example code.

Note: The Developer’s Guide shows how to configure Umpire with uberenv to build with different CAMP platforms.

Below, the allocator_access.cpp code is shown to demonstrate how this functionality can be used during devel-
opment.

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include <iostream>
#include <string>
#include "umpire/Allocator.hpp"
#include "umpire/ResourceManager.hpp"
#include "umpire/Umpire.hpp"

bool is_accessible_from_host(umpire::Allocator a)
{
if(umpire::is_accessible(umpire::Platform::host, a)) {
std::cout << "The allocator, " << a.getName()

<< ", is accessible." << std::endl;
return true;

} else {
std::cout << "The allocator, " << a.getName()

<< ", is _not_ accessible." << std::endl << std::endl;
return false;

}
}

///
//Depending on how Umpire has been set up, several different allocators could be␣
→˓accessible
//from the host CAMP platform. This example will create a list of all currently␣
→˓available
//allocators and then determine whether each can be accessed from the host platform.
//(To test other platforms, see allocator accessibility test.)
//
int main()
{
auto& rm = umpire::ResourceManager::getInstance();

std::vector<std::string> allNames = rm.getResourceNames();
std::vector<umpire::Allocator> alloc;

///
(continues on next page)

50 Chapter 5. Features

https://umpire.readthedocs.io/en/develop/developer/uberenv.html

Umpire Documentation, Release 5.0.1

(continued from previous page)

//Create an allocator for each available type
//
std::cout << "Available allocators: ";
for(auto a : allNames) {
if (a.find("::") == std::string::npos) {
alloc.push_back(rm.getAllocator(a));
std::cout << a << " ";

}
}
std::cout << std::endl;

///
//Test accessibility
///
std::cout << "Testing the available allocators for accessibility from the CAMP host␣

→˓platform:" << std::endl;
const int size = 100;
for(auto a : alloc) {
if(is_accessible_from_host(a)) {
int* data = static_cast<int*>(a.allocate(size*sizeof(int)));
for(int i = 0; i < size; i++) {
data[i] = i * i;

}
UMPIRE_ASSERT(data[size-1] == (size-1) * (size-1) && "Inequality found in array␣

→˓that should be accessible");
}

}

return 0;
}

5.3 Backtrace

The Umpire library may be configured to provide using programs with backtrace information as part of Umpire thrown
exception description strings.

Umpire may also be configured to collect and provide backtrace information for each Umpire provided memory allo-
cation performed.

5.3.1 Build Configuration

Backtrace is enabled in Umpire builds with the following:

• ``cmake . . . -DENABLE_BACKTRACE=On . . . `` to backtrace capability in Umpire.

• ``cmake -DENABLE_BACKTRACE=On -DENABLE_BACKTRACE_SYMBOLS=On . . . `` to enable Um-
pire to display symbol information with backtrace. Note: Using programs will need to add the -rdyanmic and
-ldl linker flags in order to properly link with this configuration of the Umpire library.

5.3. Backtrace 51

Umpire Documentation, Release 5.0.1

5.3.2 Runtime Configuration

For versions of the Umpire library that are backtrace enabled (from flags above), the user may expect the following.

Backtrace information will always be provided in the description strings of umpire generated exception throws.

Setting the environment variable UMPIRE_BACKTRACE=On will cause Umpire to record backtrace information for each
memory allocation it provides.

Setting the environment variable UMPIRE_LOG_LEVEL=Error will cause to Umpire to log backtrace information for
each of the leaked Umpire allocations found during application exit.

A programatic interface is also availble via the func::umpire::print_allocator_records free function.

An example for checking and displaying the information this information logged above may be found here:

//
// Copyright (c) 2016-20, Lawrence Livermore National Security, LLC and Umpire
// project contributors. See the COPYRIGHT file for details.
//
// SPDX-License-Identifier: (MIT)
//
#include <iostream>
#include <sstream>

#include "umpire/ResourceManager.hpp"
#include "umpire/Umpire.hpp"
#include "umpire/strategy/QuickPool.hpp"

int main(int, char**)
{
auto& rm = umpire::ResourceManager::getInstance();
auto allocator = rm.getAllocator("HOST");
auto pool_allocator = rm.makeAllocator<umpire::strategy::QuickPool>(

"host_quick_pool", allocator);

allocator.allocate(16);
allocator.allocate(32);
allocator.allocate(64);

pool_allocator.allocate(128);
pool_allocator.allocate(256);
pool_allocator.allocate(512);

std::stringstream ss;
umpire::print_allocator_records(allocator, ss);
umpire::print_allocator_records(pool_allocator, ss);

// Example #1 of 3 - Leaked allocations
//
// If Umpire compiled with -DENABLE_BACKTRACE=On, then backtrace
// information will be printed for each of the allocations made above.
//
// Otherwise, if Umpire was not compiled with -DENABLE_BACKTRACE=On,
// then only the addresses and size information for each allocation will be
// printed.

(continues on next page)

52 Chapter 5. Features

Umpire Documentation, Release 5.0.1

(continued from previous page)

//
if (!ss.str().empty())
std::cout << ss.str();

// Example #2 of 3 - Umpire error exceptions
//
// When umpire throws an exception, a backtrace to the offending call will
// be provided in the exception string.
//
void* bad_ptr = (void*)0xBADBADBAD;

try {
allocator.deallocate(bad_ptr); // Will cause a throw from umpire

} catch (const std::exception& exc) {
//
// exc.what() string will also contain a backtrace
//
std::cout << "Exception thrown from Umpire:" << std::endl << exc.what();

}

// Example #3 of 3 - Leak detection
//
// When the program terminates, Umpire's resource manager will be
// deconstructed. During deconstruction, Umpire will log the size and
// address, of each leaked allocation in each allocator.
//
// If Umpire was compiled with -DENABLE_BACKTRACE=On, backtrace
// information will also be logged for each leaked allocation in each
// allocator.
//
// To enable (and see) the umpire logs, set the environment variable
// UMPIRE_LOG_LEVEL=Error.
//
return 0;

}

5.4 File I/O

Umpire provides support for writing files containing log and replay data, rather than directing this output to stdout.
When logging or replay are enabled, the following environment variables can be used to determine where the output is
written:

UMPIRE_OUTPUT_DIR . Directory to write log and replay files UMPIRE_OUTPUT_BASENAME umpire Base-
name of logging and relpay files

The values of these variables are used to construct unique filenames for output. The extension .log is used for logging
output, and .replay for replay output. The filenames additionally contain three integers, one corresponding to the
rank of the process, one corresponding to the process ID, and one that is used to make multiple files with the same
basename and rank unique. This ensures that multiple runs with the same IO configuration do not overwrite files.

The format of the filenames is:

5.4. File I/O 53

Umpire Documentation, Release 5.0.1

<UMPIRE_OUTPUT_BASENAME>.<RANK>.<PID>.<UID>.<log|replay>

If Umpire is compiled without MPI support, then rank will always be 0.

5.5 Logging and Replay of Umpire Events

5.5.1 Logging

When debugging memory operation problems, it is sometimes helpful to enable Umpire’s logging facility. The logging
functionality is enabled for default builds unless -DENABLE_LOGGING=’Off’ has been specified in which case it is
disabled.

If Umpire logging is enabled, it may be controlled by setting the UMPIRE_LOG_LEVEL environment variable to Error,
Warning, Info, or Debug. The Debug value is the most verbose.

When UMPIRE_LOG_LEVEL has been set, events will be logged to the standard output.

5.5.2 Replay

Umpire provides a lightweight replay capability that can be used to investigate performance of particular allocation pat-
terns and reproduce bugs. By running an executable that uses Umpire with the environment variable UMPIRE_REPLAY
set to On, Umpire will emit information for the following Umpire events:

• version umpire::get_major_version(), umpire::get_minor_version(), and
umpire::get_patch_version()

• makeMemoryResource umpire::resource::MemoryResourceRegistry::makeMemoryResource()
• makeAllocator umpire::ResourceManager::makeAllocator()
• allocate umpire::Allocator::allocate()
• deallocate umpire::Allocator::deallocate()

5.5.3 Running with Replay

To enable Umpire replay, one may execute as follows:

UMPIRE_REPLAY="On" ./my_umpire_using_program > replay_log.json

will write Umpire replay events to the file replay_log.json that will contain the following kinds of information:

5.5.4 Interpretting Results - Version Event

The first event captured is the version event which shows the version information as follows:

{ "kind":"replay", "uid":27494, "timestamp":1558388052211435757, "event": "version",
→˓"payload": { "major":0, "minor":3, "patch":3 } }

Each line contains the following set of common elements:

kind Always set to replay

uid This is the MPI rank of the process generating the event for mpi programs or the PID for non-mpi.

54 Chapter 5. Features

Umpire Documentation, Release 5.0.1

timestamp Set to the time when the event occurred.

event Set to one of: version, makeMemoryResource, makeAllocator, allocate, or deallocate

payload Optional and varies upon event type

result Optional and varies upon event type

As can be seen, the major, minor, and patch version numbers are captured within the payload for this event.

5.5.5 makeMemoryResource Event

Next you will see events for the creation of the default memory resources provided by Umpire with the makeMemo-
ryResource event:

{ "kind":"replay", "uid":27494, "timestamp":1558388052211477678, "event":
→˓"makeMemoryResource", "payload": { "name": "HOST" }, "result": "0x101626b0" }
{ "kind":"replay", "uid":27494, "timestamp":1558388052471684134, "event":
→˓"makeMemoryResource", "payload": { "name": "DEVICE" }, "result": "0x101d79a0" }
{ "kind":"replay", "uid":27494, "timestamp":1558388052471698804, "event":
→˓"makeMemoryResource", "payload": { "name": "PINNED" }, "result": "0x101d7a50" }
{ "kind":"replay", "uid":27494, "timestamp":1558388052472972935, "event":
→˓"makeMemoryResource", "payload": { "name": "UM" }, "result": "0x101d7b00" }
{ "kind":"replay", "uid":27494, "timestamp":1558388052595814979, "event":
→˓"makeMemoryResource", "payload": { "name": "DEVICE_CONST" }, "result": "0x101d7bb0" }

The payload shows that a memory resource was created for HOST, DEVICE, PINNED, UM, and DEVICE_CONST
respectively. Note that this could also be done with the FILE memory resource. The result is a reference to the object
that was created within Umpire for that resource.

5.5.6 makeAllocator Event

The makeAllocator event occurs whenever a new allocator instance is being created. Each call to makeAllocator will
generate a pair of JSON lines. The first line will show the intent of the call and the second line will show both the
intent and the result. This is because the makeAllocator call can fail and keeping both the intent and result allows us
to reproduce this failure later.

umpire::Allocator:

{ "kind":"replay", "uid":27494, "timestamp":1558388052595864262, "event": "makeAllocator
→˓", "payload": { "type":"umpire::strategy::QuickPool", "with_introspection":true,
→˓"allocator_name":"pool", "args": ["HOST"] } }
{ "kind":"replay", "uid":27494, "timestamp":1558388052595903505, "event": "makeAllocator
→˓", "payload": { "type":"umpire::strategy::QuickPool", "with_introspection":true,
→˓"allocator_name":"pool", "args": ["HOST"] }, "result": { "allocator_ref":"0x108a8730
→˓" } }

The payload shows how the allocator was constructed. The result shows the reference to the allocated object.

5.5. Logging and Replay of Umpire Events 55

Umpire Documentation, Release 5.0.1

5.5.7 allocate Event

Like the makeAllocator event, the allocate event is captured as an intention/result pair so that an error may be replayed
in the event that there is an allocation failure.

{ "kind":"replay", "uid":27494, "timestamp":1558388052595911583, "event": "allocate",
→˓"payload": { "allocator_ref": "0x108a8730", "size": 0 } }
{ "kind":"replay", "uid":27494, "timestamp":1558388052595934822, "event": "allocate",
→˓"payload": { "allocator_ref": "0x108a8730", "size": 0 }, "result": { "memory_ptr":
→˓"0x200040000010" } }

The payload shows the object reference of the allocator and the size of the allocation request. The result shows the
pointer to the memory allocated.

5.5.8 deallocate Event

{ "kind":"replay", "uid":27494, "timestamp":1558388052596358577, "event": "deallocate",
→˓"payload": { "allocator_ref": "0x108a8730", "memory_ptr": "0x200040000010" } }

The payload shows the reference to the allocator object and the pointer to the allocated memory that is to be freed.

5.5.9 Replaying the session

Loading this file with the replay program will replay this sequence of umpire::Allocator creation, allocations,
and deallocations:

./bin/replay -i replay_log.json

5.6 Operations

Operations provide an abstract interface to modifying and moving data between Umpire :class:`umpire::Allocator`s.

5.6.1 Provided Operations

5.7 Strategies

Strategies are used in Umpire to allow custom algorithms to be applied when allocating memory. These strategies can
do anything, from providing different pooling methods to speed up allocations to applying different operations to every
alloctaion. Strategies can be composed to combine their functionality, allowing flexible and reusable implementations
of different components.

56 Chapter 5. Features

Umpire Documentation, Release 5.0.1

5.7.1 Provided Strategies

5.7. Strategies 57

Umpire Documentation, Release 5.0.1

58 Chapter 5. Features

CHAPTER

SIX

CONTRIBUTION GUIDE

This document is intented for developers who want to add new features or bugfixes to Umpire. It assumes you have
some familiarity with git and GitHub. It will discuss what a good pull request (PR) looks like, and the tests that your
PR must pass before it can be merged into Umpire.

6.1 Forking Umpire

If you aren’t an Umpire deveolper at LLNL, then you won’t have permission to push new branches to the repository.
First, you should create a fork. This will create a copy of the Umpire repository that you own, and will ensure you can
push your changes up to GitHub and create pull requests.

6.1.1 Developing a New Feature

New features should be based on the develop branch. When you want to create a new feature, first ensure you have an
up-to-date copy of the develop branch:

$ git checkout develop
$ git pull origin develop

You can now create a new branch to develop your feature on:

$ git checkout -b feature/<name-of-feature>

Proceed to develop your feature on this branch, and add tests that will exercise your new code. If you are creating new
methods or classes, please add Doxygen documentation.

Once your feature is complete and your tests are passing, you can push your branch to GitHub and create a PR.

6.1.2 Developing a Bug Fix

First, check if the change you want to make has been fixed in develop. If so, we suggest you either start using the
develop branch, or temporarily apply the fix to whichever version of Umpire you are using.

If the bug is still unfixed, first make sure you have an up-to-date copy of the develop branch:

$ git checkout develop
$ git pull origin develop

Then create a new branch for your bugfix:

59

https://github.com/LLNL/Umpire/fork

Umpire Documentation, Release 5.0.1

$ git checkout -b bugfix/<name-of-bug>

First, add a test that reproduces the bug you have found. Then develop your bugfix as normal, and ensure to make test
to check your changes actually fix the bug.

Once you are finished, you can push your branch to GitHub, then create a PR.

6.1.3 Creating a Pull Request

You can create a new PR here. Ensure that your PR base is the develop branch of Umpire.

Add a descriptive title explaining the bug you fixed or the feature you have added, and put a longer description of the
changes you have made in the comment box.

Once your PR has been created, it will be run through our automated tests and also be reviewed by Umpire team
members. Providing the branch passes both the tests and reviews, it will be merged into Umpire.

6.1.4 Tests

Umpire uses Bamboo and Gitlab for continuous integration tests. Our tests are automatically run against every new pull
request, and passing all tests is a requirement for merging your PR. If you are developing a bugfix or a new feature, please
add a test that checks the correctness of your new code. Umpire is used on a wide variety of systems with a number of
configurations, and adding new tests helps ensure that all features work as expected across these environments.

Umpire’s tests are all in the test directory and are split up by component.

60 Chapter 6. Contribution Guide

https://github.com/LLNL/Umpire/compare

CHAPTER

SEVEN

DEVELOPER GUIDE

This section provides documentation on Umpire’s Continuous Integration, how to configure Umpire using Uberenv,
and the process for analyzing Umpire applications using HPCToolKit.

7.1 Continuous Integration

7.1.1 Gitlab CI

Umpire uses continuous integration to ensure that changes added to the repository are well integrated and tested for
compatability with the rest of the existing code base. Our CI tests incude a variety of vetted configurations that run on
different LC machines.

Umpire shares its Gitlab CI workflow with other projects. The documentation is therefore shared.

7.2 Uberenv

Umpire shares its Uberenv workflow with other projects. The documentation is therefore shared.

This page will provides some Umpire specific examples to illustrate the workflow described in the documentation.

7.2.1 Before to start

First of all, it is worth noting that Umpire does not have dependencies, except for CMake, which is most of the time
installed externally.

That does not make the workflow useless: Uberenv will drive Spack which will generate a host-config file with the
toolchain (including cuda if activated) and the options or variants pre-configured.

Machine specific configuration

$ ls -c1 scripts/uberenv/spack_configs
blueos_3_ppc64le_ib
darwin
toss_3_x86_64_ib
blueos_3_ppc64le_ib_p9
config.yaml

Umpire has been configured for toss_3_x86_64_ib and other systems.

61

https://radiuss-ci.readthedocs.io/en/latest/uberenv.html#ci
https://radiuss-ci.readthedocs.io/en/latest/uberenv.html#uberenv-guide

Umpire Documentation, Release 5.0.1

Vetted specs

$ ls -c1 .gitlab/*jobs.yml
.gitlab/lassen-jobs.yml
.gitlab/ruby-jobs.yml

CI contains jobs for ruby.

$ git grep -h "SPEC" .gitlab/ruby-jobs.yml | grep "gcc"
SPEC: "%gcc@4.9.3"
SPEC: "%gcc@6.1.0"
SPEC: "%gcc@7.1.0"
SPEC: "%gcc@7.3.0"
SPEC: "%gcc@8.1.0"

We now have a list of the specs vetted on ruby/toss_3_x86_64_ib.

Note: In practice, one should check if the job is not allowed to fail, or even deactivated.

MacOS case

In Umpire, the Spack configuration for MacOS contains the default compilers depending on the OS version (compil-
ers.yaml), and a commented section to illustrate how to add CMake as an external package. You may install CMake
with homebrew, for example.

7.2.2 Using Uberenv to generate the host-config file

We have seen that we can safely use gcc@8.1.0 on ruby. Let us ask for the default configuration first, and then produce
static libs, have OpenMP support and run the benchmarks:

$ python scripts/uberenv/uberenv.py --spec="%gcc@8.1.0"
$ python scripts/uberenv/uberenv.py --spec="%gcc@8.1.0~shared+openmp tests=benchmarks"

Each will generate a CMake cache file, e.g.:

hc-ruby-toss_3_x86_64_ib-gcc@8.1.0-fjcjwd6ec3uen5rh6msdqujydsj74ubf.cmake

7.2.3 Using host-config files to build Umpire

$ mkdir build && cd build
$ cmake -C <path_to>/<host-config>.cmake ..
$ cmake --build -j .
$ ctest --output-on-failure -T test

It is also possible to use this configuration with the CI script outside of CI:

$ HOST_CONFIG=<path_to>/<host-config>.cmake scripts/gitlab/build_and_test.sh

62 Chapter 7. Developer Guide

Umpire Documentation, Release 5.0.1

7.2.4 Using Uberenv to configure and run Leak Sanitizer

During development, it may be beneficial to regularly check for memory leaks. This will help avoid the possibility
of having many memory leaks showing up all at once during the CI tests later on. The Leak Sanitizer can easily be
configured from the root directory with:

$ srun -ppdebug -N1 --exclusive python scripts/uberenv/uberenv.py --spec="%clang@9.0.0␣
→˓cxxflags=-fsanitize=address"
$ cd build
$ cmake -C <path_to>/hc-ruby-toss_3_x86_64_ib-clang@9.0.0.cmake ..
$ cmake --build -j
$ ASAN_OPTIONS=detect_leaks=1 make test

Note: The host config file (i.e., hc-ruby-...cmake) can be reused in order to rebuild with the same configuration if
needed.

This will configure a build with Clang 9.0.0 and the Leak Sanitizer. If there is a leak in one of the tests, it can be useful
to gather more information about what happened and more details about where it happened. One way to do this is to
run:

$ ASAN_OPTIONS=detect_leaks=1 ctest -T test --output-on-failure

Additionally, the Leak Sanitizer can be run on one specific test (in this example, the “replay” tests) with:

$ ASAN_OPTIONS=detect_leaks=1 ctest -T test -R replay --output-on-failure

Depending on the output given when running the test with the Leak Sanitizer, it may be useful to use addr2line -e
<./path_to/executable> <address_of_leak> to see the exact line the output is referring to.

7.3 HPCToolKit

This page will describes the process and series of steps to analyze Umpire specific applications with HPCToolKit.

7.3.1 Using HPCToolKit

LLNL’s documentation for using HPCToolKit for general analysis is a great starting resource and can be found here.
The HPCToolKit manual can be found here.

The LC machines have hpctoolkit installed as a module which can be loaded with module load hpctoolkit. The
rest of this page will describe the steps for specific analysis examples with Umpire.

7.3. HPCToolKit 63

https://github.com/HPCToolkit/hpctoolkit
https://hpc.llnl.gov/training/tutorials/livermore-computing-resources-and-environment#performance-analysis
http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf

Umpire Documentation, Release 5.0.1

Getting Started

Below is the basic (Umpire-specific) set up to load, build with, and run with HPCToolKit:

$ ssh lassen
$ module load hpctoolkit
$ cmake -DENABLE_CUDA=On -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-O3 -g" -DCMAKE_C_
→˓FLAGS="-O3 -g"
$ make -j
$ hpcrun -e CPUTIME ./bin/executable
$ hpcstruct ./bin/executable
$ hpcprof -S executable.hpcstruct hpctoolkit-executable-measurements-<job_id>/

Note: The HPCToolKit manual recommends building with a fully optimized version of the executable (hence, the
added flags in the cmake command).

Note: The hpcrun command can measure certain “events”. Those events are added with a -e argument and include
things like CPUTIME, gpu=nvidia, gpu=nvidia,pc, IO, MEMLEAK, etc. A full list of the possible events can be found
by running hpcrun -L.

After running the hpcrun command, a hpctoolkit-executable-measurements-<job_id>/ folder will be gener-
ated. After running the hpcstruct command, a executable.hpcstruct file will be generated. These two generated
items will then become input used with hpcprof, as shown above. If the file that you are analyzing is large or is using
a lot of resources, then hpcprof-mpi could be better to use. The hpcprof-mpi command looks the same otherwise.
The result of either hpcprof command is a generated “database” folder.

At this point, we need the HPCViewer program to view the resulting database. The easiest way to engage with the
HPCViewer is to do it locally. Therefore, we can tar up the generated database folder and use scp to send it to a local
machine. For example:

$ tar -czvf database.tar hpctoolkit-executable-database-<job_id>/
$ scp username@lassen.llnl.gov:path/to/database.tar .
$ tar -xzvf database.tar

From here, you can open the HPCViewer and select the untarred database folder we just sent over to be viewed. More
information on how to use HPCViewer will be provided in the next section.

Otherwise, using HPCViewer from the command line can be tricky since we need X11 forwarding. In order to have
X11 forwarding available, we have to ssh into the LC machine and compute node a little differently:

$ ssh -YC lassen
$ bsub -XF -W 60 -nnodes 1 -Is /bin/bash

Note: If that doesn’t work, you can also try ssh’ing into the LC machine with ssh -X -S none lassen.

From here we can run the same steps as before (listed at the top of this section). When we have generated the database
folder, we will just call the hpcviewer program with hpcviewer hpctoolkit-executable-database-<job_id>/.
LLNL’s documentation for HPCToolKit also provides an example command to use the hpctraceviewer tool.

64 Chapter 7. Developer Guide

Umpire Documentation, Release 5.0.1

Using HPCViewer

Once you have your own version of HPCViewer locally, it is very easy to launch and open up the database folder
generated earlier. You can do this with just ./hpcviewer and selecting the right database folder.

For our use cases, we mostly used the “Hot Child” feature, but that is by no means the most valuable or most important
feature that HPCViewer offers. To learn more about what HPCViewer can do, the instruction manual is here.

Note: Depending on what’s available on your local machine, you may have to download or update Java in order to run
hpcviewer. There are instructions here for hpcviewer. You can get Java 8 from here.

Running with Hatchet

Hatchet is a tool that can better analyze performance metrics given from a variety of tools, including HPCToolKit.
Using Hatchet to analyze the output from HPCToolKit can help visualize the performance of different parts of the
same program.

To use Hatchet, we create a HPCToolKit analysis, just as before, but this time there is a specialized hpcprof-mpi
command needed when generating the database folder. Below is an example:

$ module load hpctoolkit
$ cmake -DENABLE_CUDA=On -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-O3 -g" -DCMAKE_C_
→˓FLAGS="-O3 -g"
$ make -j
$ hpcrun -e CPUTIME ./bin/executable
$ hpcstruct ./bin/executable
$ hpcprof-mpi --metric-db yes -S executable.hpcstruct hpctoolkit-executable-measurements-
→˓<job_id>/

The flag, --metric-db yes, is an optional argument to hpcprof-mpi that allows Hatchet to better interpret informa-
tion given from HPCToolKit. Without it, it will be very hard to get Hatchet to understand the HPCToolKit output.

We’ve now generated a HPCToolKit database folder which Hatchet can read. Now we need to launch Hatchet and get
started with some analysis. Below is a Python3 interpreter mode example:

$ python3 #start the python interpreter
$ import hatchet as ht #import hatchet
$ dirname = "hpctoolkit-executable-database-<job_id>" #set var to hpctoolkit database
$ gf = ht.GraphFrame.from_hpctoolkit(dirname) #set up the graphframe for hatchet that␣
→˓uses database

$ print(gf.tree(depth=3)) #This is to check briefly that I recognize my tree by checking␣
→˓the root node + a couple sub-nodes
$ print(len(gf.graph)) #I can also verify the tree by checking the length of the␣
→˓graphframe
$ print(gf.dataframe.shape) #I can also print out the 'shape' of the tree (depth x column_
→˓metrics)
$ print(list(gf.dataframe.columns)) #I can print out all the column_metrics (e.g. "time",
→˓ "nid", etc.)
$ print(gf.dataframe.index.names) #I can also print the node names (may be kind of␣
→˓confusing unless you know what you're looking for)

$ query1 = [{"name": "119:same_order\(umpire::Allocator\)"}, "*"] #Set up a query method␣
→˓to filter for the "same_order" sub tree (continues on next page)

7.3. HPCToolKit 65

http://hpctoolkit.org/download/hpcviewer/
http://hpctoolkit.org/download/hpcviewer/
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://github.com/hatchet/hatchet
https://hatchet.readthedocs.io/en/latest/index.html

Umpire Documentation, Release 5.0.1

(continued from previous page)

$ filtered_gf = gf.filter(query1) #apply the query method as a filter on the original␣
→˓tree
$ print(len(filtered_gf.graph)) #verifying that I now have a subtree (length will be␣
→˓smaller)
$ print(filtered_gf.tree(metric_column="time (inc)")) #printing the new filtered subtree␣
→˓by inclusive time metric
$ print(filtered_gf.tree()) #printing the whole filtered tree as is

$ query2 = [{"name": "120:reverse_order\(umpire::Allocator\)"}, "*"] #Set up a query␣
→˓method to filter for the "reverse_order" sub tree
$ filtered_gf_rev = gf.filter(query2) #apply the query method as a filter on the␣
→˓original tree
$ print(len(filtered_gf_rev.graph)) #verifying that I now have a subtree (length will be␣
→˓smaller)
$ print(filtered_gf_rev.tree(metric_column = "time (inc)")) #printing the new filtered␣
→˓subtree by inclusive time metric

$ filtered_gf.drop_index_levels() #As-is, the tree will include info for ranks - if that␣
→˓isn't needed, this function drops that info
$ filtered_gf.dataframe #this provides a spreadsheet of the data that is populating the␣
→˓graphframe (what the tree shows)
$ filtered_gf.dataframe.iloc[0] #gives the first entry of the spreadsheet, here that is␣
→˓the root node of the filtered tree
$ filtered_gf.dataframe.iloc[0,0] #gives the first part of the first entry of the␣
→˓spreadsheet (here, it's the inclusive time)

$ gf3 = filtered_gf - filtered_gf_rev #Stores the diff between two (comparable) trees in␣
→˓gf3
$ print(gf3.tree()) #prints the diff tree
$ gf3.dataframe #outputs the spreadsheet of data that populates the diff tree

This example was set up to analyze the performance of the no-op_stress_test.cpp benchmark file from the Umpire
repo. It compares the performance from one part of the program (i.e., the part that measure the performance when doing
deallocations in the “same order” as they were allocated) versus another part of the same program (i.e., the part that
measures the performance when doing deallocations in the “reverse order” as they were allocated).

In Hatchet, these two parts show up as subtrees within the entire call path tree of my example program. Therefore, I
can compare one subtree to another in terms of performance (in my case, I compared in terms of inclusive time).

7.3.2 Analyzing results

After opening up a database folder in HPCViewer or analyzing the call paths in Hatchet, we can compare the perfor-
mance (or whatever measurement we are looking at) of different parts of the program against other parts and try to
find performance trends. In Umpire’s use case, we plan to use Hatchet as part of our CI to find out if integrating a new
commit into our repository increases the performance by a certain threshold or more. If so, our CI test will fail. Our
process looks something like:

• Grab the example program’s database from the develop branch

• Grab the example program’s database from a different branch I want to compare against

• Create a graphframe for each database

• Create a filtered graphframe for each that focuses on the specific part of the program I want to measure against

66 Chapter 7. Developer Guide

Umpire Documentation, Release 5.0.1

• Compare the inclusive time for each filtered graphframe (or whatever metric I want to analyze)

• If the metric (e.g., inclusive time) of the new branch’s filtered graphframe is more than threshold more than
that of develop’s, then fail the test!

7.3. HPCToolKit 67

	Getting Started
	Installation
	Building Umpire
	Installing Umpire

	Basic Usage

	Umpire Tutorial
	Allocators
	Resources
	Operations
	Copy
	Move
	Memset
	Reallocate
	Listings

	Dynamic Pools
	Introspection
	Typed Allocators
	Replay
	Input Example
	Running the Example
	Replaying the session

	C API: Allocators
	C API: Resources
	C API: Pools
	FORTRAN API: Allocators

	Advanced Configuration
	Umpire Cookbook
	Growing and Shrinking a Pool
	Disable Introspection
	Apply Memory Advice to a Pool
	Apply Memory Advice with a Specific Device ID
	Moving Host Data to Managed Memory
	Improving DynamicPoolList Performance with a Coalesce Heuristic
	Move Allocations Between NUMA Nodes
	Determining the Largest Block of Available Memory in Pool
	Coalescing Pool Memory
	Building a Pinned Memory Pool in FORTRAN
	Visualizing Allocators
	Mixed Pool Creation and Algorithm Basics
	Thread Safe Allocator
	Using File System Allocator (FILE)
	Using Burst Buffers On Lassen
	Running File Resource Benchmarks

	Getting the Strategy Name

	Features
	Allocators
	Allocator Accessibility
	Allocator Inaccessibility Configuration
	Build and Run Configuration

	Backtrace
	Build Configuration
	Runtime Configuration

	File I/O
	Logging and Replay of Umpire Events
	Logging
	Replay
	Running with Replay
	Interpretting Results - Version Event
	makeMemoryResource Event
	makeAllocator Event
	allocate Event
	deallocate Event
	Replaying the session

	Operations
	Provided Operations

	Strategies
	Provided Strategies

	Contribution Guide
	Forking Umpire
	Developing a New Feature
	Developing a Bug Fix
	Creating a Pull Request
	Tests

	Developer Guide
	Continuous Integration
	Gitlab CI

	Uberenv
	Before to start
	Machine specific configuration
	Vetted specs
	MacOS case

	Using Uberenv to generate the host-config file
	Using host-config files to build Umpire
	Using Uberenv to configure and run Leak Sanitizer

	HPCToolKit
	Using HPCToolKit
	Getting Started
	Using HPCViewer
	Running with Hatchet

	Analyzing results

